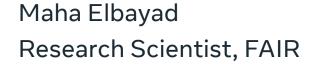
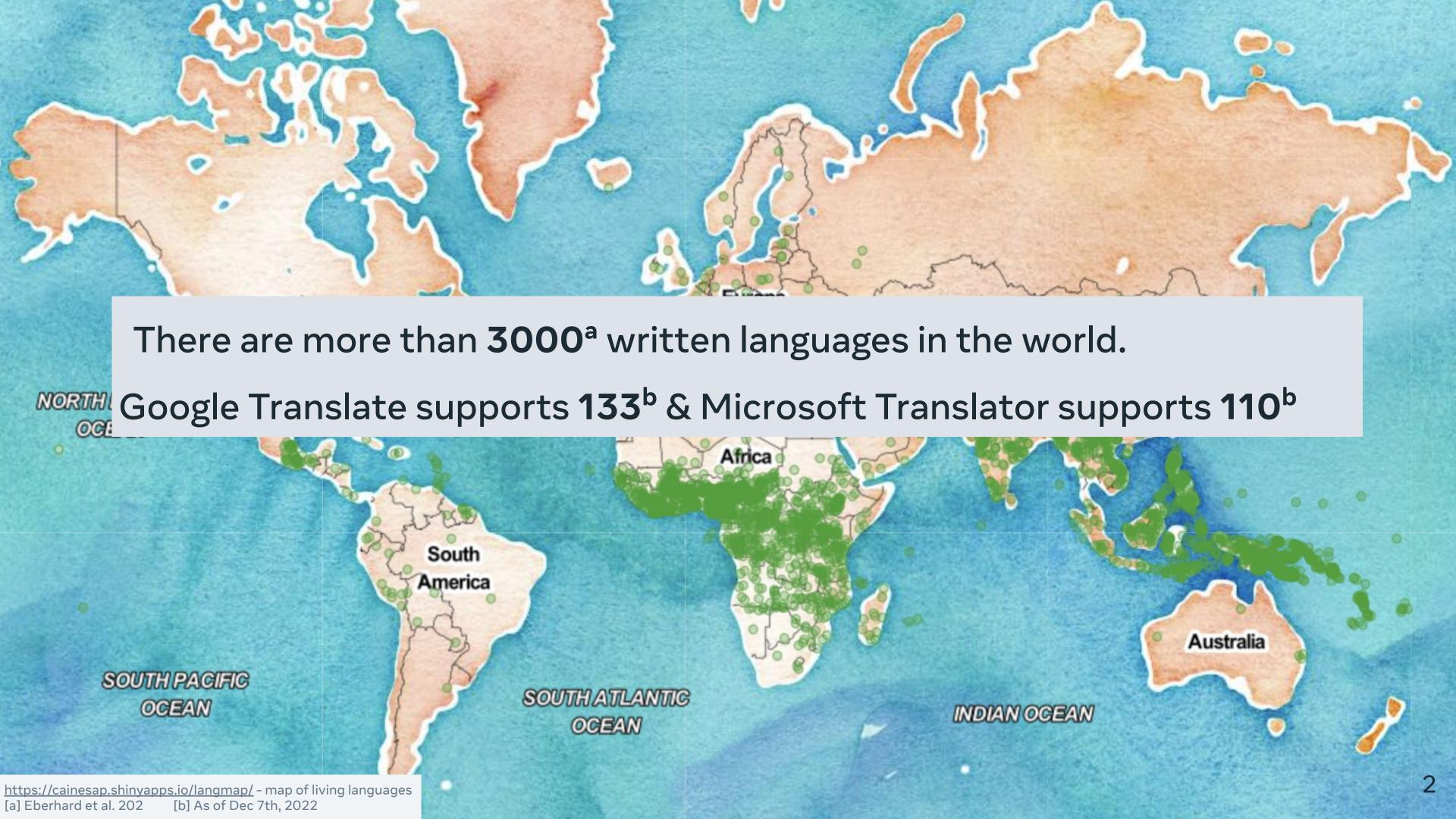
No Language Left Behind (NLLB) Scaling Human-Centered Machine Translation

NLLB Team, Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shannon Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán, Philipp Koehn, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Jeff Wang





NORTH STAR

Develop a general-purpose universal machine translation model capable of translating between any two languages in various domains.

- The majority of improvements in MT are for high-resource languages.
- Handling low-resource, underserved languages brings additional challenges:
 - Creating training data
 - Training multilingual MT models
 - Properly evaluating performance

THE NLLB EFFORT

How we structured our project to take on these challenges?

Multilingual Machine Translation is a multi-faceted problem. Our research effort is taken on by an interdisciplinary team:

- Humanities i.e., Philosophy, Ethics
- Social scientific i.e., Sociology, Linguistics
- Technical i.e., Computer Science, Statistics

THE NLLB EFFORT

Our team was structured around our key challenges

Data

Research Question How can we collect enough training data for low-resource languages?

Deliverables

High quality aligned sentences covering 200 languages

Modeling

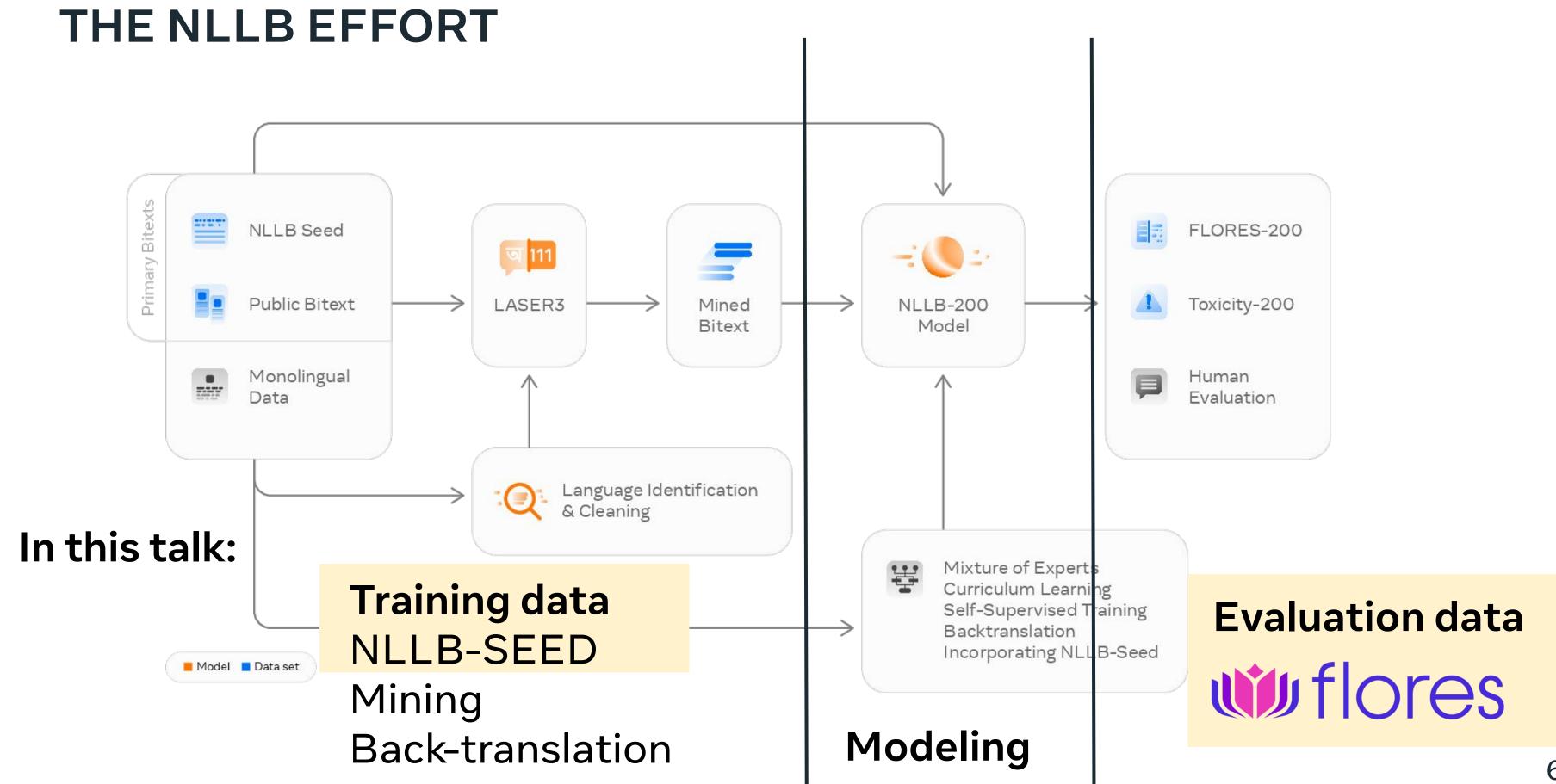
How can we scale multilingual MT to 200 languages?

Final MT model with optimum architecture and training strategy

Evaluation

How can we evaluate across 200 languages with confidence and mitigate toxicity in the model outputs?

High quality evaluation benchmark Toxicity lists covering 200 languages



- 1. Multilingual Benchmark Dataset (FLORES-200)
- 2. Bitext Seed Data (NLLB-SEED)

1. FLORES-200 (Benchmark)

A high-quality evaluation dataset or a reliable benchmark can help assess progress. The ability to evaluate allows us to compare different approaches and understand what requires further research and development.

- High quality, many-to-many benchmark dataset.
- The same 3,001 sentences in 204 languages (> 40,000 directions).
- English source collected from Wikinews, Wikijunior, Wikivoyage.
- Translated and reviewed by professional translators and reviewers.
- Focus on low resource languages.

2. NLLB-SEED

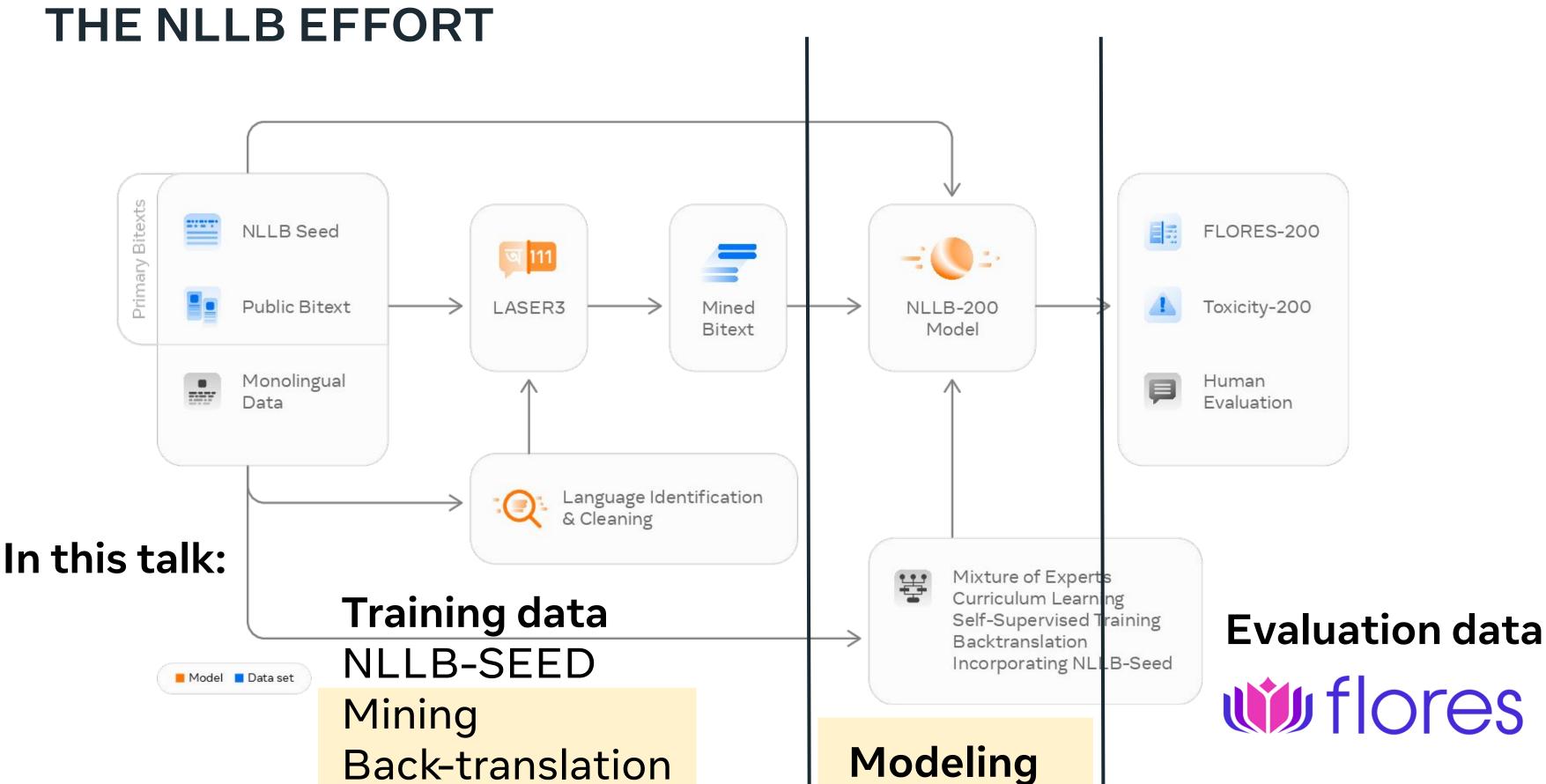
Human-translated bitext data in 39 low-resource languages to train models that require parallel data

Purpose:

- Supporting language identification for new languages
- Aligned bitext to help train translation models
- Domain finetuning (Ex: adapting general-purpose translation models to the Wikipedia domain)

Data Collection Process:

- Sampled from Wikimedia's List of articles every Wikipedia should have¹
- Sampled triplets of continuous sentences from English Wikipedia articles in 11 categories incl. People, History, Philosophy and Religion, Geography, etc.



- 1. Bitext Mining
- 2. Back-translation
- 3. Training large models

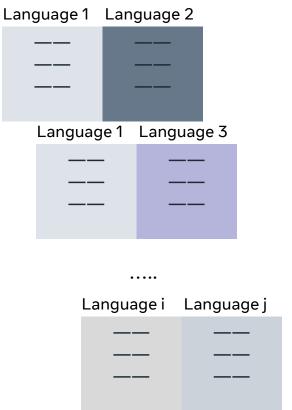
1. Bitext Mining

We extend existing datasets with large-scale data mining (Schwenk et al. 2021) i.e., collecting non-aligned monolingual data and identifying sentences that have a high probability of being translations of each other.

1. Bitext Mining

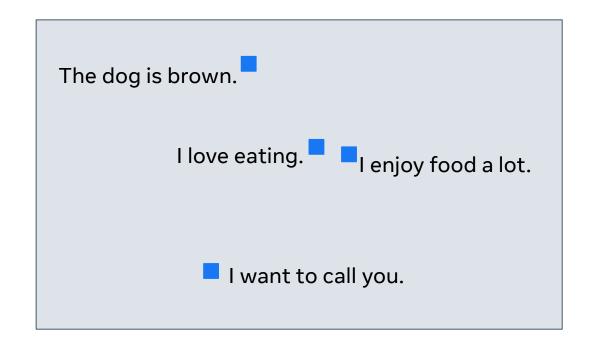
There are two components to the data mining pipeline:

- a. Language IDentification (LID) systems to predict the primary language for a span of text FastText (Grave et al. 2018)
- b. **Multilingual Sentence Encoders** to embed sentences and find similar semantically similar sentences in different languages **LASER3** (Heffernan et al. 2022)



1. Bitext Mining

 b. Multilingual Sentence Encoders to embed sentences and find semantically similar ones in different languages – LASER (Artexte and Schwenk, 2019), LaBSE (Feng et al, 2020).



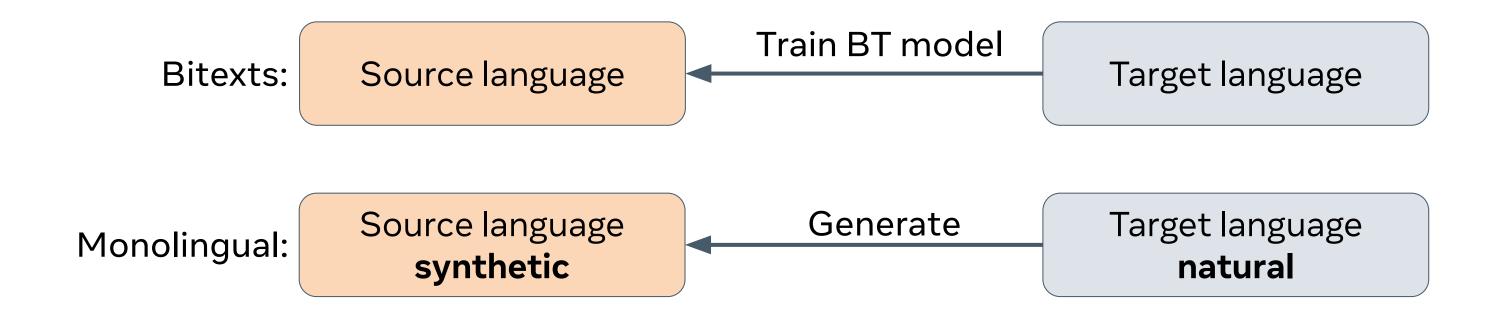
Sentences with similar meaning are *close*.

Sentences with similar meaning are *close* independently of their language

- 1. Bitext Mining
- b. **Multilingual Sentence Encoders** LASER3 encoders are trained independently via distillation (Heffernan et al. 2022)
 - (2) Multilingual distillation (1) Masked language modeling cross-entropy loss cosine loss sentence embedding sentence embedding teacher student student LASER (Artexte et al., 2019) bitexts "Is your watch broken?" "Saatin [MASK] mu?" "Saatin bozuk mu?" monolingual "That movie was good." "That movie was good."

2. Back-translation

Create parallel corpora noisy on the source side via machine translation (Sennrich et al. 2016; Edunov et al. 2018).

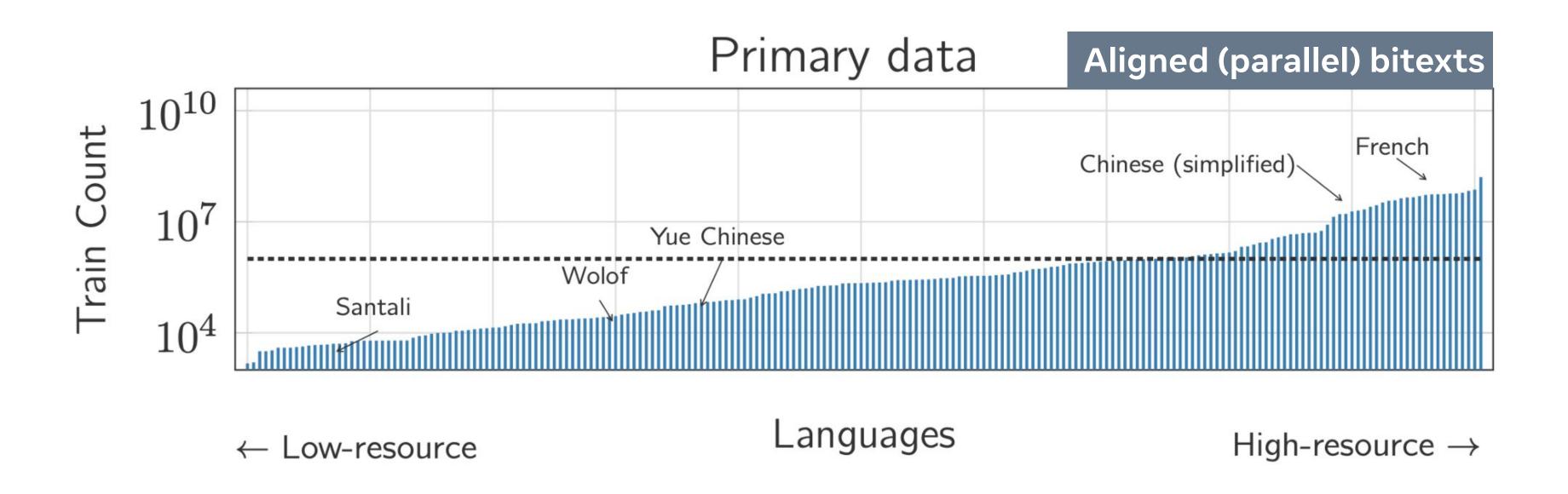


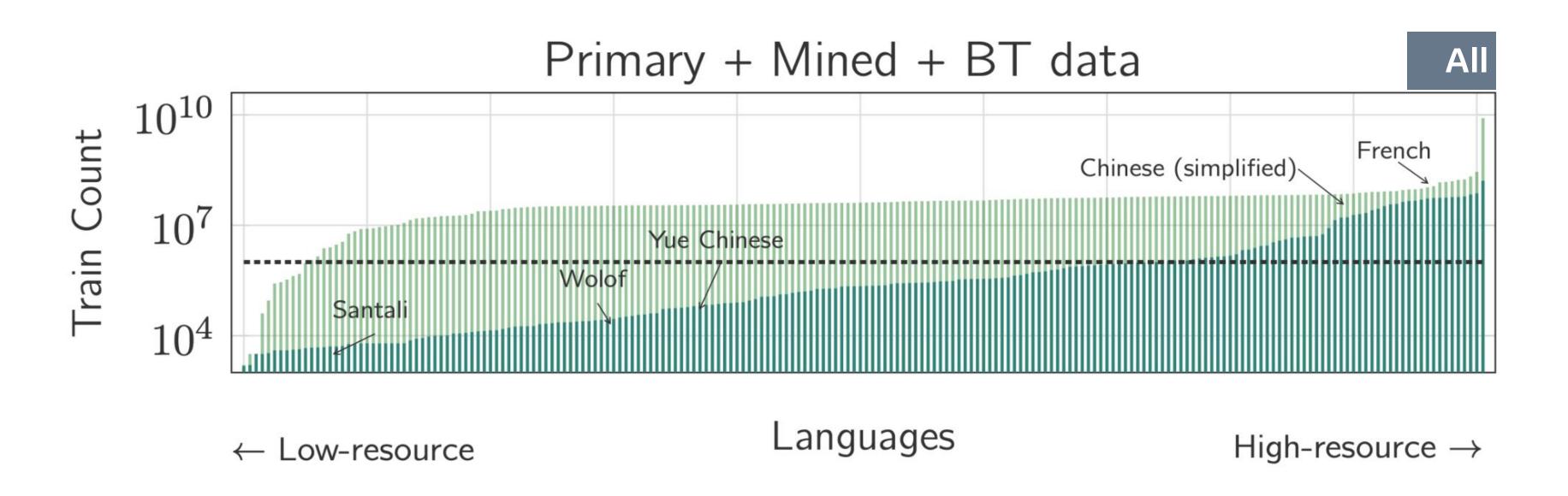
We generate BT data with two models:

- **MmtBT**, a multilingual neural MT model.
- **SmtBT**, a series of bilingual MOSES models.

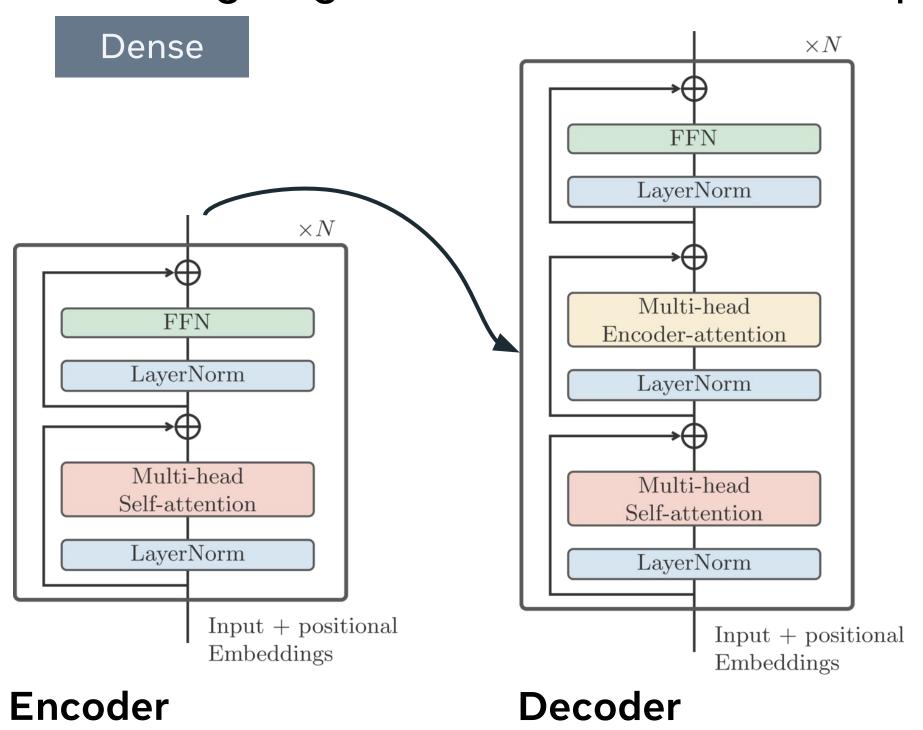
Summary-sources of training data

Source	Human Aligned?	Noisy?	Limited Size?	Model-Dependent?	Models Used
NLLB-Seed	✓	X	✓	X	
PublicBitext	X	1		X	
Mined	X	1	X		Sentence Encoders
MmtBT	X	✓	X	✓	Multilingual
SmtBT	×	✓	×		Bilingual MOSES
Ideal Data	✓	X	×	×	





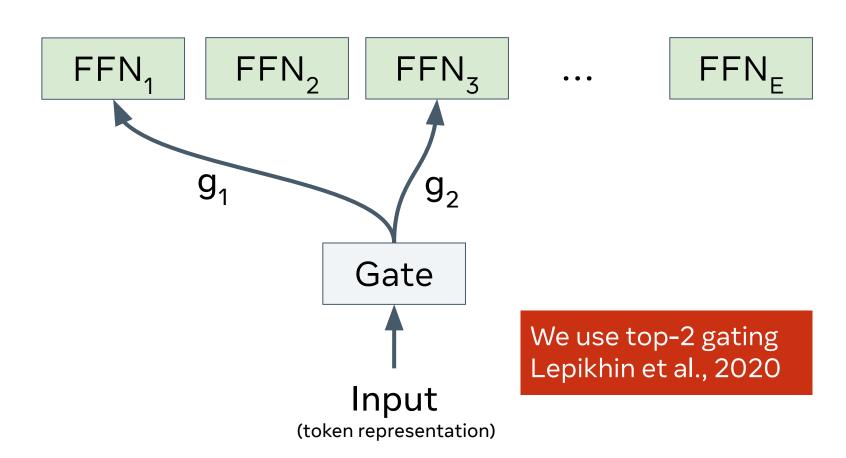
3. Training large models - Mixture of Experts



Source sentence prefixed with <source_language>

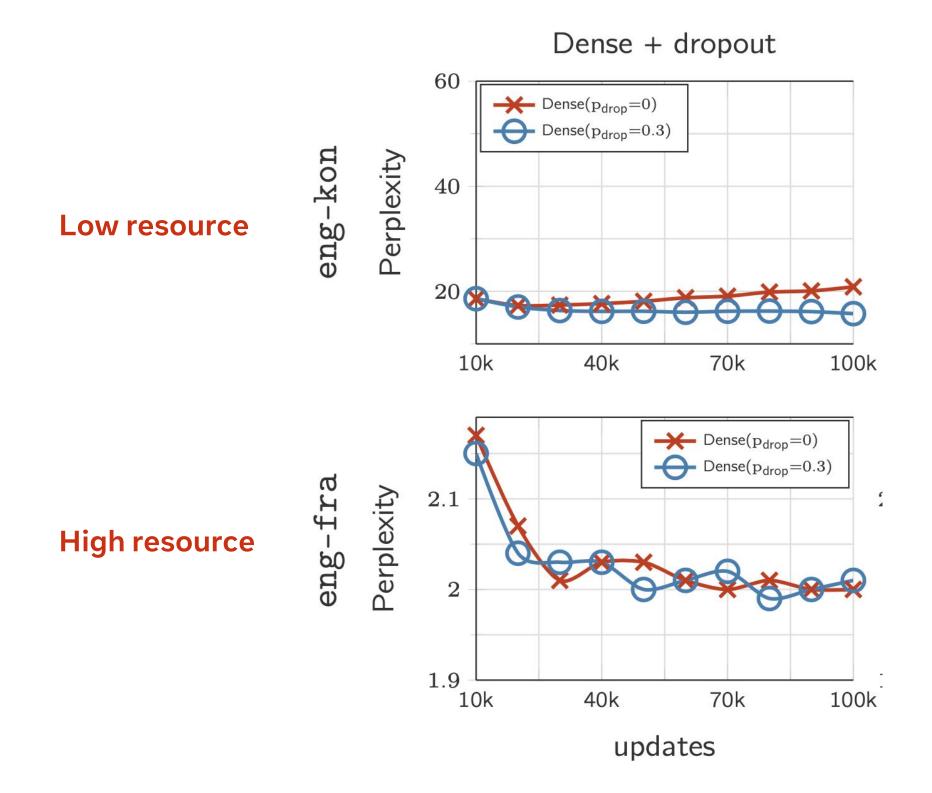
Target sentence prefixed with <target_language>

Sparsely Gated Mixture of Experts (MoE)

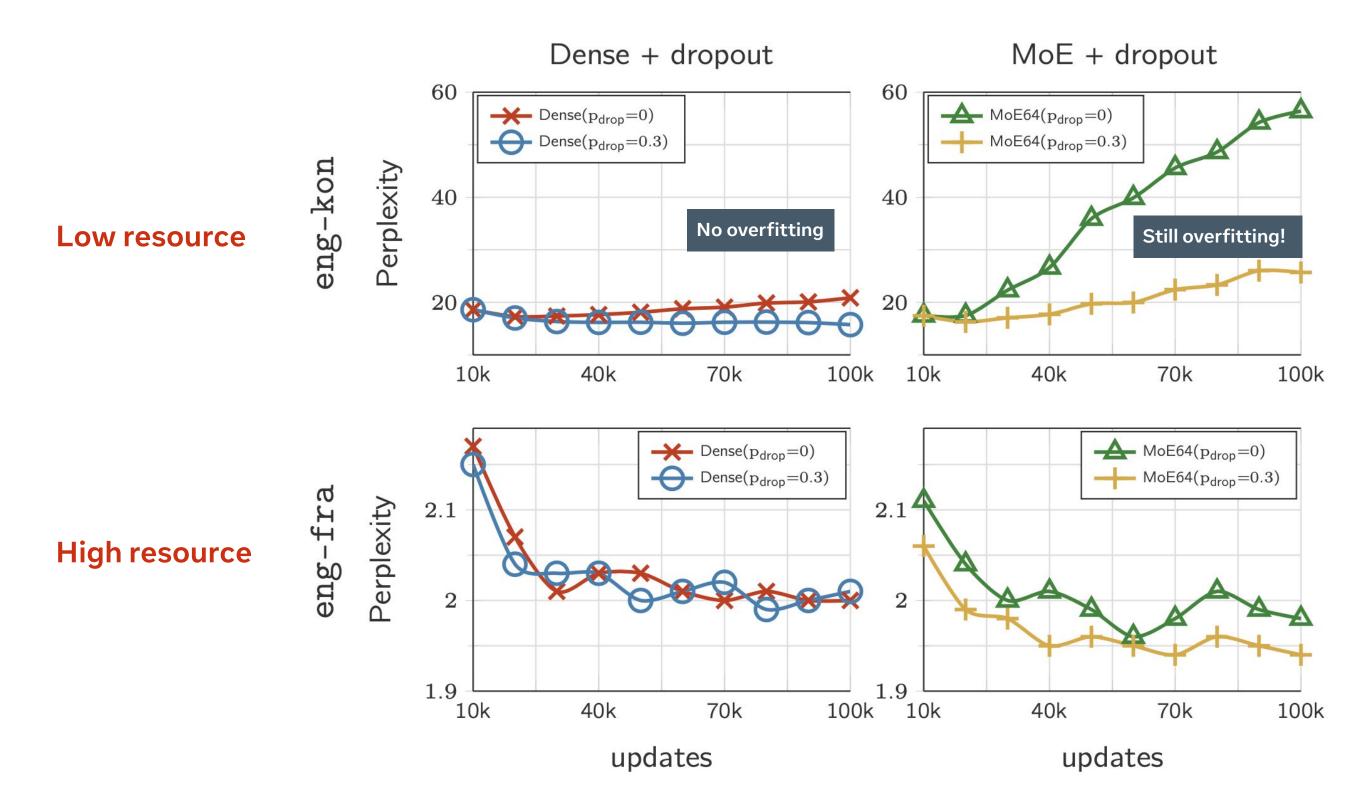


Replace every other FFN in the Transformer model with an MoE FFN layer

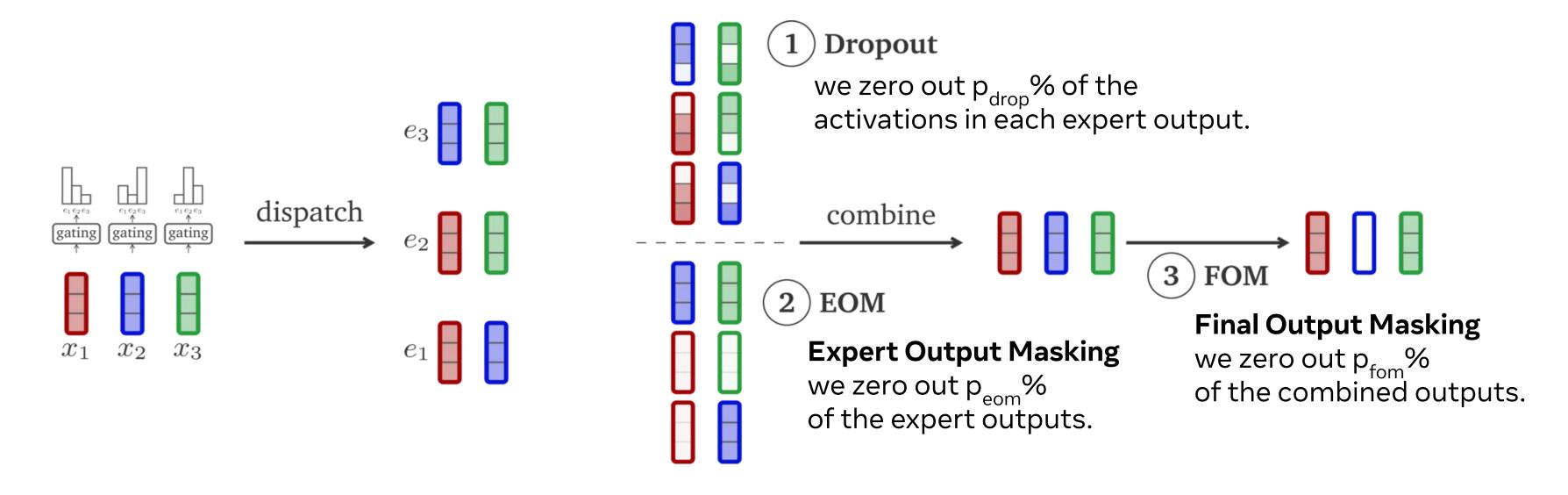
3. Training large models - the issue of overfitting low-resource languages



3. Training large models - the issue of overfitting low-resource languages



3. Training large models - Addressing overfitting



We combine these methods with **Curriculum learning**, where we introduce translation directions that overfit early, later in the training process.

Results

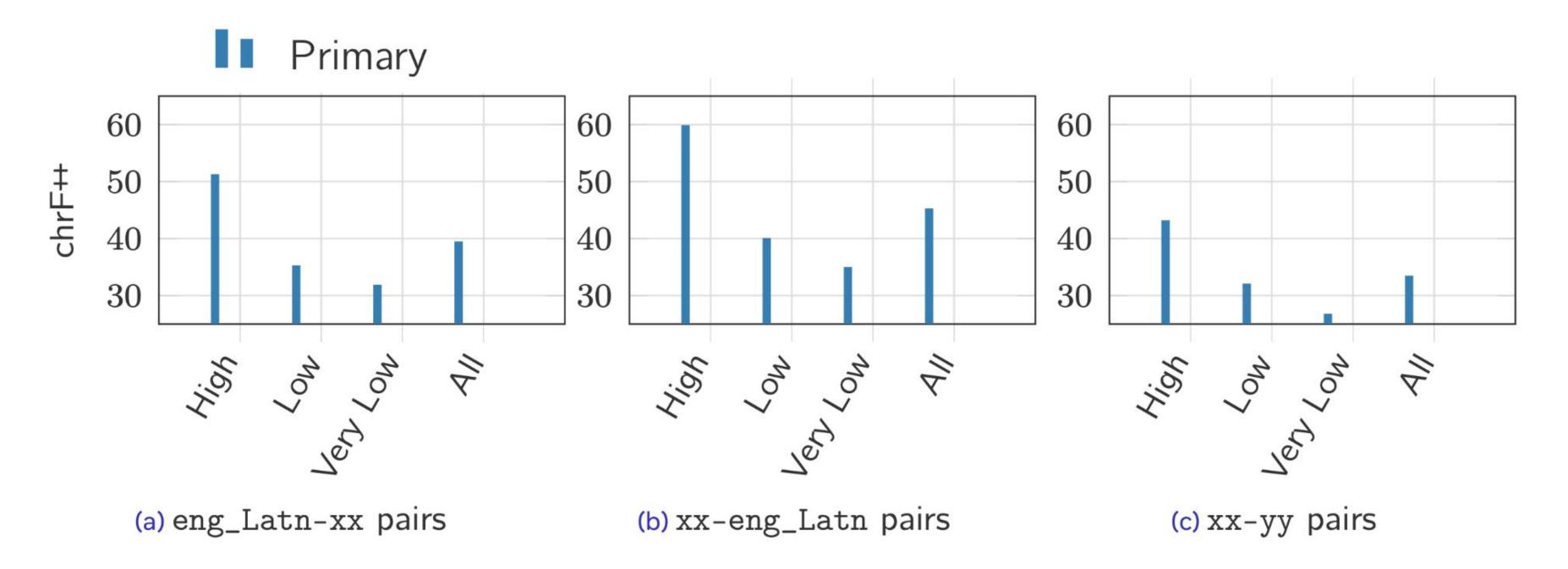
Results - seed datasets

Experimental setup. We train small bilingual models on 8 directions, we first train on the small amounts of pre-existing publicly available parallel data (primary) and then adding seed datasets

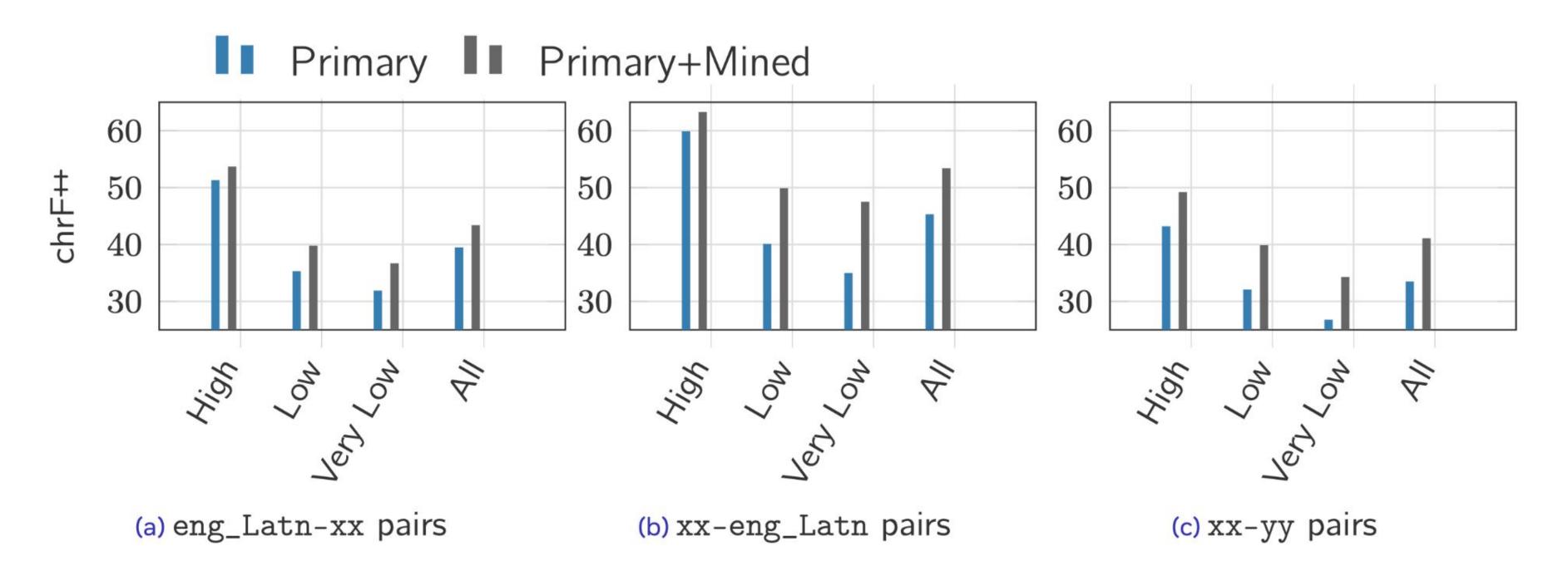
Back-translation, as well as a number of other augmentation approaches, rely on the presence of a "seed model" to bootstrap the system.

	public	public bitext		d data	combined
	#data	chrF++	#data	chrF++	chrF++
ban-eng eng-ban	10.2k	13.1 15.9	6.2k	20.8	22.2 21.9
dik-eng eng-dik	16.9k	12.9 9.0	6.2k	16.1 13.7	17.0 13.1
fuv-eng eng-fuv	12.1k	15.6 9.2	6.2k	16.3 9.8	18.1 13.5
mri-eng eng-mir	31.3k	16.7 23.2	6.2k	17.4 24.3	26.8 31.5

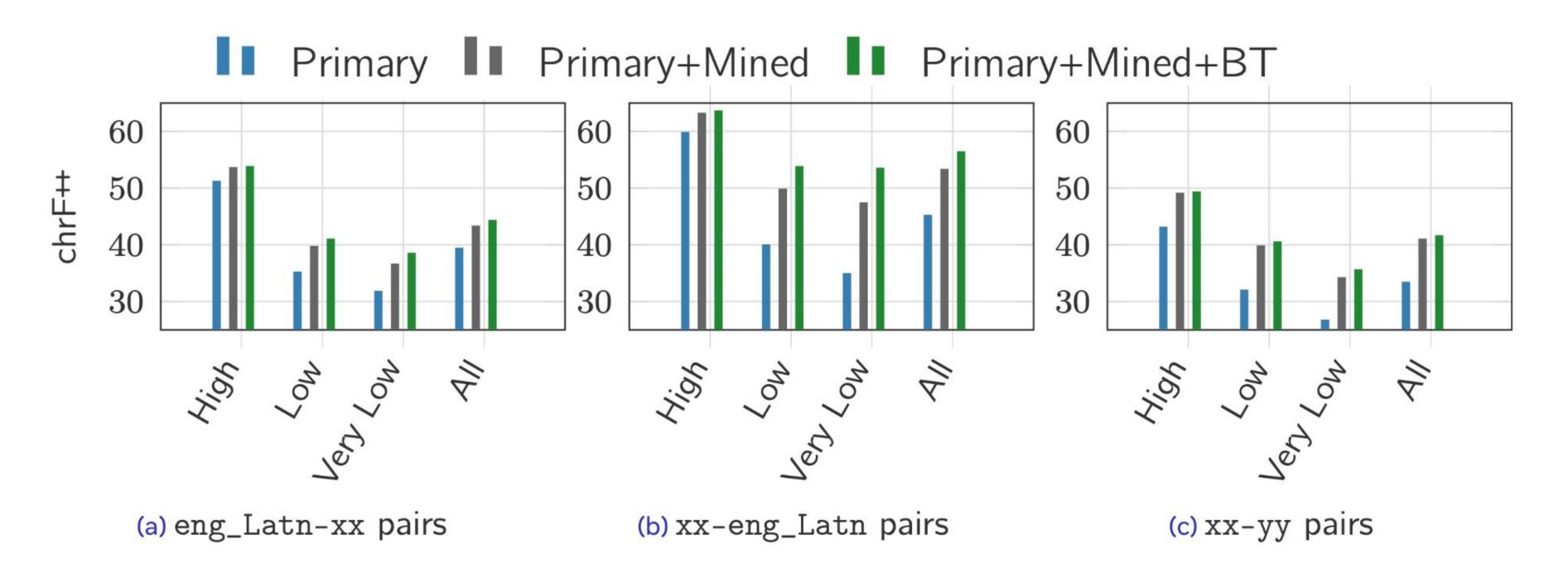
Results



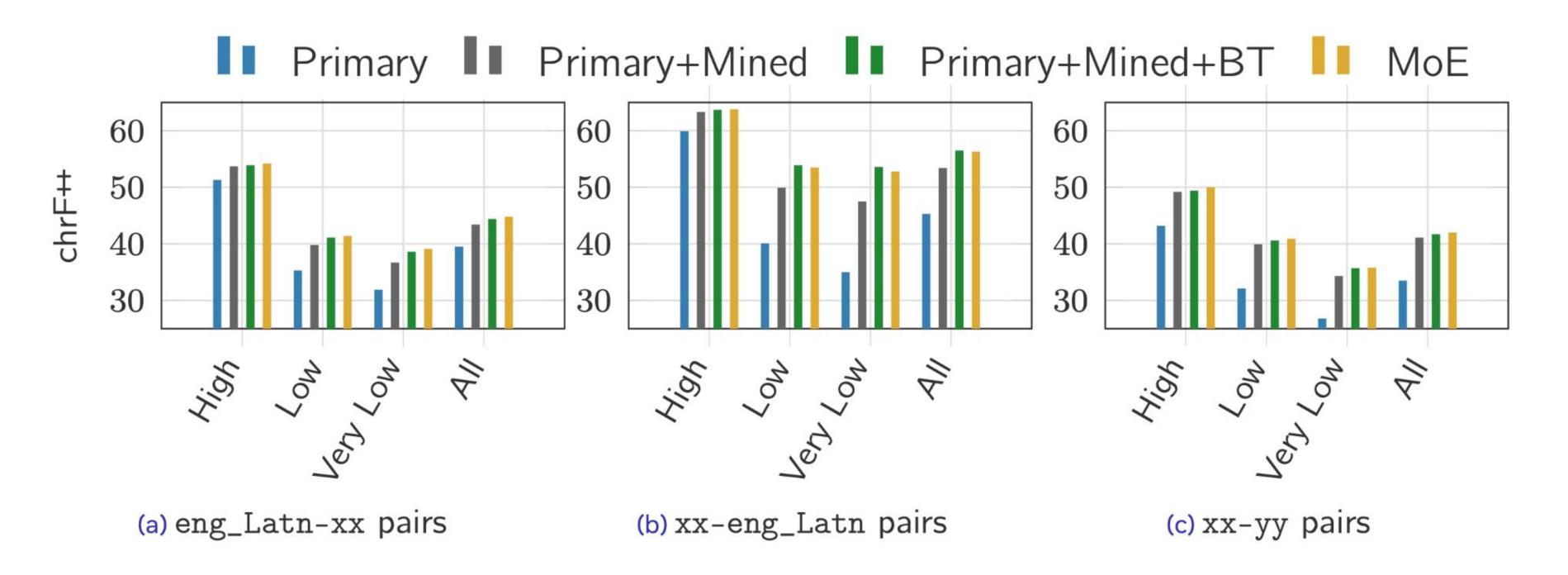
Results



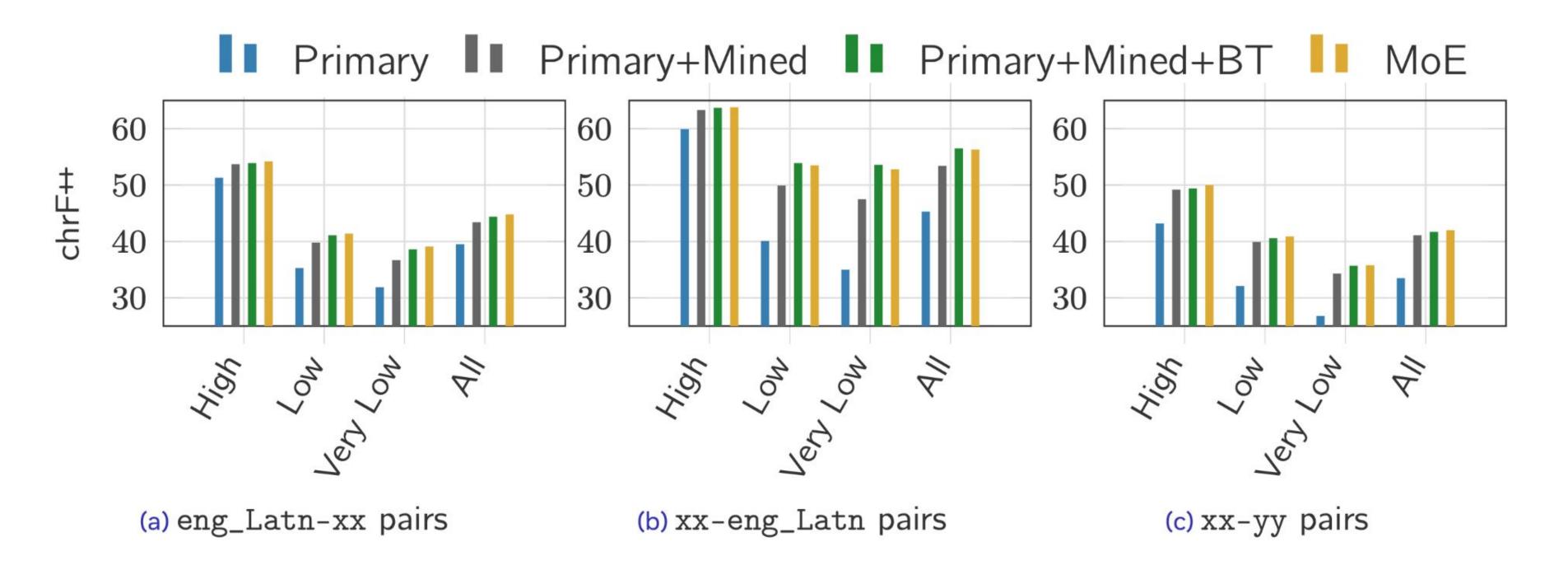
Results



Results



Results



Results - NLLB-200 significantly outperforms previous SOTA.

		Flores-10	1 devtest (spB	LEU/chrF++)
	$eng_Latn-xx$	xx-eng_Latn	хх-уу	Avg.
87 languages				
M2M-100 Deepnet NLLB-200	-/- -/- 35.4 /52.1	-/- -/- 42.4 /62.1	-/- -/- 25.2 /43.2	13.6/- 18.6/- 25.5 /43.5
101 language	S			
DeltaLM NLLB-200	26.6/- $34.0/50.6$	33.2/- 41.2 /60.9	16.4/- 23.7 /41.4	16.7/- 24.0 /41.7

We also compare favorably to models trained on one language family (e.g. African languages with MMTAfrica and Mafand-MT or Indic languages with IndicBART and IndicTrans) - see tables 31 & 32 of the NLLB paper.

Results - Performance on the new Flores-200

							ŀ	Flores-20	00 devtest	(chrF++)
		eng_I	atn-x	x		xx-en	g_Latr	L	хх-уу	Average
	$\overline{\mathrm{all}}$	high	low	v.low	all	high	low	v.low	$\overline{\text{all}}$	all
chrF++ 4	5.3	54.9	41.9	39.5	56.8	63.5	54.4	54.4	35.6	35.7
spBLEU 2	27.1	38.3	23.1	21.3	38.0	44.7	35.5	35.6	17.3	17.5
			xx-yy	(super	vised)		хх-уу	y (zero-s	hot)	

	XX	с-уу (sı	upervis	ed)	X	х-уу (z	ero-sho	ot)
	all	high	low	v.low	all	high	low	v.low
chrF++	39.7	43.9	39.3	38.6	35.4	46.3	34.6	33.3
spBLEU 2	20.3	24.3	19.9	20.0	17.2	28.3	16.4	15.3

eng_Latn-xx			xx-eng	g_Latn	Average	
	low	v.low	low	v.low	low	v.low
Google Translate 3 NLLB-200	32.3/50.3 30.3/48.2	,	35.9/57.1 41.3/60.4	,	34.1/53.7 35.8/54.3	31.3/51.7 $33.4/52.6$

Results - Out-of-domain generalization

Evaluation and comparison to state-of-the-art on sampled directions from WMT, IWSLT, WAT, Floresv1, TICO, Mafand, Autshumato and Madar. These benchmarks cover domains other than wikipedia (e.g., health, news, scripted talks, ...)

	en	g-xx	xx	-eng		en	g-xx	xx	-eng
	Published	NLLB-200	Published	NLLB-200		Published	NLLB-200	Published	NLLB-200
khm npi		0.4/27.4 10.4 /39.0	(b) 10.7/- (c) 14.5/-	16.8 /36.5 29.3 /54.8	hin khm	(l) 22.1/- (l) 43.9/-	27.2 /51.5 45.8 /42.3	(1)32.9/- (1)27.5/-	37.4 /61.9 39.1 /61.1
$rac{ exttt{npi}}{ exttt{pbt}}$	(b)9.3/-	10.5/34.3	(b)15.7/-	22.0 /46.8	mya	(c) 39.2 /-	23.5/31.5	(c) 34.9 /-	32.7/57.9
<u>sin</u>	$^{(c)}3.3/-$	11.6/40.9	$^{(c)}13.7/$ -	23.7 /49.8					

(a) Flores(v1)

(b) WAT

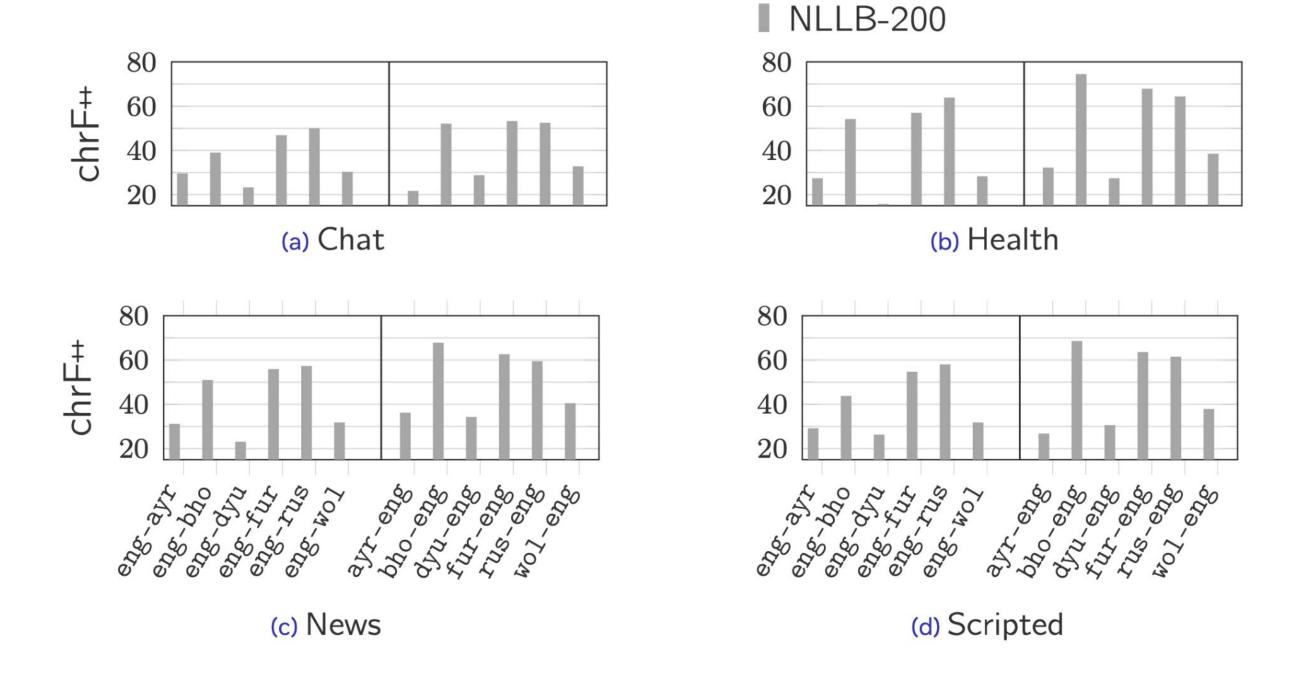
	eng	g-xx	xx-	-eng		en	g-xx	XX-	-eng
	Published	NLLB-200	Published	NLLB-200		Published	NLLB-200	Published	NLLB-200
ces	(b) 26.5 /-	25.2/50.6	(d) 35.3 /-	33.6/56.8	arb	(b)22.0/-	25 /47.2	(b)44.5/-	44.7 /63.7
deu	^(a) 44.9 /-	33.0/59.2	^(a) 42.6 /-	37.7/60.5	deu	$^{(k)}25.5/$ -	31.6/57.8	^(k) 28.0/-	36.5/57.5
est	$^{(a)}26.5/-$	27.0/55.7	(a) 38.6 /-	34.7/59.1	fra	^(g) 40.0/-	43.0/65.6	$^{(g)}39.4/-$	45.8 /64.8
fin	^(a) 32.1 /-	27.7/57.7	(a) 40.5 /-	28.8/53.7	ita	(b)38.1/-	42.5/64.4	(b)43.3/-	48.2/66.5
fra	(a) 46.7 /-	44.2/65.7	(a) 43.9 /-	41.9/63.9	jpn	^(c) 19.4/-	19.5/21.5	^(c) 19.1/-	22.6 /46.1
guj	(d) 17.8 /-	17.6/46.6	(f)25.1/-	31.2/56.5	kor	(c) 22.6 /-	22.5/27.9	$^{(c)}24.6/-$	25.4 /48.0
hin	(f)25.5/-	26.0/51.5	(f)29.7/-	37.4 /61.9	nld	$^{(c)}34.8/-$	34.9/60.2	^(c) 43.3 /-	41.0/60.9
kaz	(i)15.5/-	34.8 /61.5	(i) 30.5 /-	30.2/56.0	pes	$^{(j)}06.5/-$	15.5/39.2	^(j) 18.4/-	42.3 /61.3
lit	(a) 17.0/-	37.0 /63.9	(a) 36.8 /-	29.7/56.4	pol	^(j) 16.1/-	21.1 /48.3	^(j) 18.3/-	27.1 /48.2
lvs	(a) 25.0 /-	21.3/50.8	(a) 28.6 /-	24.8/50.8	ron	(k)25.2/-	29.4/55.5	(k)31.8/-	42.0/62.0
ron	(a)41.2/-	41.5/58.0	(h) 43.8 /-	43.4/64.7	rus	^(j) 11.2/-	24.0/47.0	^(j) 19.3/-	30.1 /51.3
rus	(a)31.7/-	44.8 /65.1	(a)39.8/-	39.9 /61.9	vie	(c) 35.4 /-	34.8/53.7	$^{(c)}36.1/-$	36.6/57.1
spa	$^{(e)}33.5/-$	37.2 /59.3	$^{(e)}34.5/-$	37.6 /59.9				*	
tur	(a) 32.7 /-	23.3/54.2	(a) 35.0 /-	34.3/58.3	(b) I	WSLT			
zho	(b) 35.1 /-	33.9/22.7	(a) 28.9 /-	28.5/53.9					

	eng	g-xx	xx-	-eng
	Published	NLLB-200	Published	NLLB-200
arb	15.2/-	34.1 /59.4	28.6/-	49.6 /70.3
fra	37.6/-	44.9/64.4	39.4/-	47.3 /65.4
gaz	0.6/-	10.7 /44.0	2.1/-	35.9 /57.2
hin	6.4/-	46.2/65.8	18.9/-	58.0/76.2
ind	41.3/-	55.1 /74.8	34.9/-	54.3 /73.5
<u>lin</u>	7.8/-	24.6/51.5	6.7/-	33.7 /54.1
lug	3.0/-	22.1 /48.6	5.6/-	39.0/58.2
mar	0.2/-	16.1/46.3	1.2/-	44.3 /66.9
pes	8.5/-	30.0/55.6	15.1/-	45.5 /67.5
por	47.3/-	52.9/72.9	48.6/-	58.7 /76.5
rus	28.9/-	35.7 /59.1	28.5/-	41.2 /65.1
spa	48.7/-	57.2 /74.9	46.8/-	57.5 /75.9
swh	22.6/-	34.1/59.1	0.0/-	49.6 /68.1
urd	2.8/-	27.4 /53.3	0.0/-	44.7 /66.9
zho	33.7/-	42.0 /33.3	28.9/-	37.6 /61.9
zsm	6.3/-	52.4 /73.4	0.0/-	58.8 /76.1
zul	11.7/-	22.4 /55.1	25.5/-	50.6 /68.4

	eng-xx		xx-eng	
	Adelani et al. (2022)	NLLB-200	Adelani et al. (2022)	NLLB-200
hau_Latn	15.9/42.1	8.2/34.8	18.2/40.2	13.5/37.9
ibo_Latn	26.0/51.3	23.9/50.4	21.9/48.0	21.9 /46.1
lug_Latn	15.7/46.9	25.8 / 55.2	22.4/48.5	30.9/54.4
luo_Latn	12.0/39.4	14.0/40.4	14.3/38.3	15.9/38.4
swh_Latn	27.7/ 57.2	30.7 /56.0	30.6/55.8	39.3/60.8
${ t tsn_Latn}$	${f 31.9/59.5}$	28.5/55.6	27.8/54.0	37.3/60.2
yor_Latn	13.9/37.4	14.4/36.3	18.0/41.0	24.4/46.7
zul_Latn	$\mathbf{22.9/56.3}$	16.1/47.3	38.1/57.7	40.3/59.7
	fra-xx		xx-fra	
	Adelani et al. (2022)	NLLB-200	Adelani et al. (2022)	NLLB-200
bam_Latn	24.7/49.9	7.7/29.9	25.8/49.0	14.6/37.5
ewe_Latn	8.9/37.5	8.3/36.4	11.6/37.2	19.4/42.6
fon_Latn	7.4/28.5	3.4/21.8	9.9/28.9	8.9/28.7
mos_Latn	2.2/16.8	5.4/27.6	4.1/18.8	6.1/23.5
wol_Latn	12.7/35.8	9.1/29.9	11.5/35.3	9.5/30.2

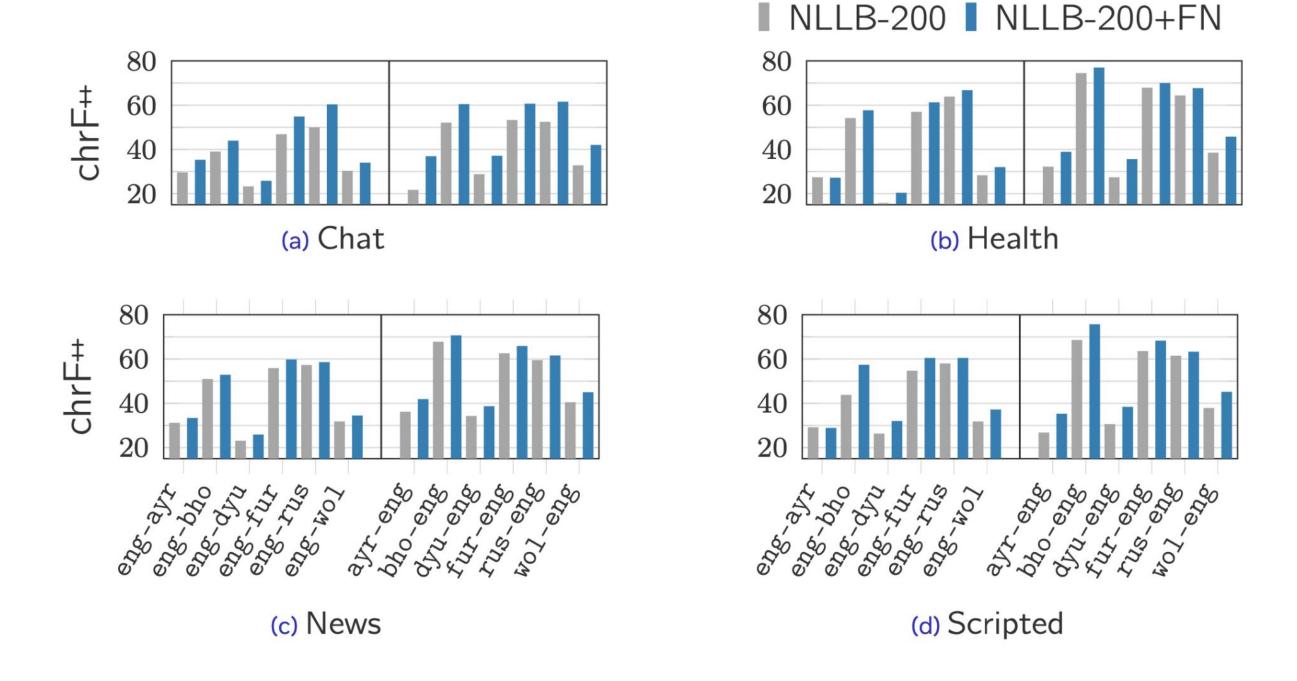
Results - Out-of-domain generalization with Finetuning

An additional dataset released, dubbed NLLB-MD (multi-domain) in 6 languages covering 3 domains (chat, news and health, scripted).



Results - Out-of-domain generalization with Finetuning

An additional dataset released, dubbed NLLB-MD (multi-domain) in 6 languages covering 3 domains (chat, news and health, scripted).



THE NLLB EFFORT

Project webpage: https://ai.facebook.com/research/no-language-left-behind/

The Paper: https://arxiv.org/abs/2207.04672

Demo with children stories https://nllb.metademolab.com/story/1

Codebases

Modeling: https://github.com/facebookresearch/fairseq/tree/nllb

LASER3 (sentence encoders): https://github.com/facebookresearch/LASER/blob/main/nllb

Stopes (data and mining pipelines): https://github.com/facebookresearch/stopes/

THE NLLB EFFORT

Models checkpoints

Final NMT models: https://github.com/facebookresearch/fairseg/tree/nllb#multilingual-translation-models

- + Different model sizes (1.3B, 3.3B and 54.5B) + distilled models (600M and 1.3B)
- + NLLB-200 translations, first and only instance of open sourcing model translations on such a large scale

LASER3 encoders: https://github.com/facebookresearch/LASER/blob/main/nllb

Data

Flores-200, NLLB-Seed, NLLB-MD, Toxicity-200: https://github.com/facebookresearch/flores

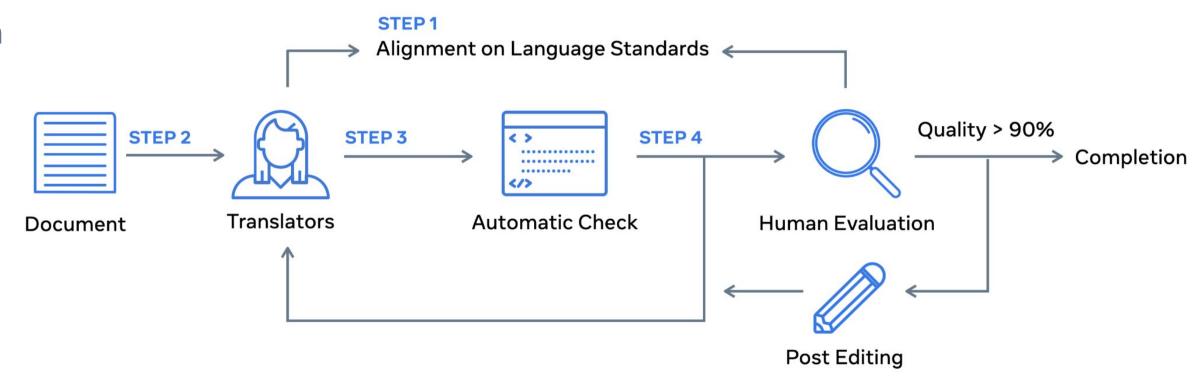
Mined bitexts: https://huggingface.co/datasets/allenai/nllb

00 Meta Al

1. Data Collection Processes: FLORES-200 (Benchmark)

Data Creation Process:

- 1. Translator + Reviewer Alignments
- 2. Initial Translation + QA + Arbitration
- 3. Full Translation
- 4. Automated and Linguistic Checks
- 5. Full QA by Third Party Reviewer
- 6. Arbitration (if applicable)
- 7. Rework + Spot Check (if applicable)
- 8. Final Delivery



2. Data Collection Challenges

Resourcing Challenges

- Difficulty in finding qualified resources for low-resource languages
- Finding and retaining resources
 - Consistency/continuity
 needed if working with new
 resources

Linguistic Challenges

- Dialectal Variations
- Lower levels of industry-wide standardization
 - Greater ambiguity
 - Higher subjectivity in assessing quality and consistent translations
- To tackle this:
 - Setting up alignments between translators and reviewers
 - Inevitable variations within an aligned dialect
 - How to balance preferential differences vs objective quality

Collection at Scale

- Language-specific challenges
- Long turnaround times
- Unexpected challenges
 throughout the whole process