Pervasive Attention 2D Convolutional Neural Networks for Sequence-to-Sequence Prediction

Maha Elbayad Laurent Besacier Jakob Verbeek CoNLL 2018, Brussels, Belgium

NLE seminar, Sept 28, 2018

• Sequence-to-sequence models:

- ▶ Recurrent vs feed-forward en/decoders.
- ► Encoder-decoder interfacing.
- Pervasive attention (our work).
- Experimental results.
- Conclusions.

A conditional language model that assigns probabilities to a sequence of tokens $\mathbf{y} = (y_1, ..., y_{|y|})$ given a conditioning sequence $\mathbf{x} = (x_1, ..., x_{|x|})$.

Using the chain rule:

$$egin{aligned} p(\mathbf{y}|\mathbf{x}) &= \prod_{t=1}^{|y|} p(y_t|\mathbf{x}, y_{< t}) \ p_{ heta}(\mathbf{y}|\mathbf{x}) &= \prod_{t=1}^{|y|} f_{ heta}(\mathbf{x}, y_{< t}) \end{aligned}$$

How to encode x and $y_{<t}$?

Recurrent encoder-decoders

Encoder

Graves (2013); Sutskever et al. (2014); Cho et al. (2014); Bahdanau et al. (2015)

< ≣ > 4

Bidirectional encoder

Graves (2013); Sutskever et al. (2014); Cho et al. (2014); Bahdanau et al. (2015)

Graves (2013); Sutskever et al. (2014); Cho et al. (2014); Bahdanau et al. (2015)

NLE, Sept 2018

Graves (2013); Sutskever et al. (2014); Cho et al. (2014); Bahdanau et al. (2015)

Graves (2013); Sutskever et al. (2014); Cho et al. (2014); Bahdanau et al. (2015)

く注→

Graves (2013); Sutskever et al. (2014); Cho et al. (2014); Bahdanau et al. (2015)

Graves (2013); Sutskever et al. (2014); Cho et al. (2014); Bahdanau et al. (2015)

NLE, Sept 2018

Graves (2013); Sutskever et al. (2014); Cho et al. (2014); Bahdanau et al. (2015)

Feed-forward encoder-decoders

く注→

Encoder-decoder models | Convolutional networks

Kalchbrenner et al. (2014); Kim (2014); Gehring et al. (2017b)

Encoder-decoder models | Convolutional networks

Encoder

Kalchbrenner et al. (2014); Kim (2014); Gehring et al. (2017b)

Encoder-decoder models | Convolutional networks

Decoder (Causal convolutions)

Kalchbrenner et al. (2014); Kim (2014); Gehring et al. (2017b)

NLE, Sept 2018

Encoder-decoder models | Transformer networks

Encoder (self-attention)

Vaswani et al. (2017)

Encoder-decoder models | Transformer networks

Decoder (masked self-attention)

Vaswani et al. (2017)

Encoder-decoder models | Feed-forward

Similar to RNNs:

- Possible interfacing between the encoder & decoder.
- Inference by building step by step the target sequence.

< ∃⇒

Encoder-decoder models

Recurrent

- Onbounded dependencies.
- $\bigcirc \mathcal{O}(\mathcal{T})$ sequential steps.
- Full context.

く注→

Encoder-decoder models

Recurrent

- 1 Autoregressive filters (1d).
- 2 Unbounded dependencies.
- $\bigcirc \mathcal{O}(\mathcal{T})$ sequential steps.
- 4 Full context.

Convolutional

- Convolutional filters (1d).
- Bounded dependencies.
- $\bigcirc \mathcal{O}(1)$ sequential steps.
- Incrementally built context.

Encoder-decoder models

Recurrent

- Autoregressive filters (1d).
- Unbounded dependencies.
- $\Im \mathcal{O}(\mathcal{T})$ sequential steps.
- Full context.

Convolutional

- Convolutional filters (1d).
- Bounded dependencies.
- $\bigcirc \mathcal{O}(1)$ sequential steps.
- Incrementally built context.

Transformer

- (self-) attention.
- Unbounded dependencies.
- $\bigcirc \mathcal{O}(1)$ sequential steps.
- 4 Full context.

Encoder-decoder interfacing

Single vector:

- context = $s_{|s|}$.
- context = $\frac{1}{|s|} \sum s_i$
- context = max s_i

Only at h_0 or at every time step.

く注→

Encoder-decoder interfacing

Single vector:

- context = $s_{|s|}$.
- context = $\frac{1}{|s|} \sum s_i$
- context = max s_i

Only at h_0 or at every time step.

Attention mechanisms:

$$e_i = \text{score}(s_i, h_{t-1}), \forall \ lpha = softmax(e_i)_i \ ext{context}_t = \sum_i lpha_i s_i$$

Encoder-decoder interfacing

Attention mechanisms:

$$e_i = \text{score}(s_i, h_{t-1}), \forall i$$

 $\alpha = softmax(e_i)_i$
 $\text{context}_t = \sum_i \alpha_i s_i$

Scoring (k, q): dot $k^T Wq$ concat $v^T tanh(W[k; q])$ Scaled-dot $\frac{k^T Wq}{dim(k)}$

State of the art sequence to sequence learning:

- Recurrent (Bahdanau et al., 2015; Luong et al., 2015).
- Convolutional (Gehring et al., 2017b).
- Transformer (Vaswani et al., 2017)

Encoder-decoder + shallow attention interface

< ∃⇒

State of the art sequence to sequence learning:

- Recurrent (Bahdanau et al., 2015; Luong et al., 2015).
- Convolutional (Gehring et al., 2017b).
- Transformer (Vaswani et al., 2017)

Encoder-decoder + shallow attention interface

How about a built-in deep interface between the two sequences? No separate encoder and decoder modules!

< ∃→

Pervasive attention

∢ 注→

Pervasive attention

The initial 2D grid: $\forall i, j : \{1, ... | y | \} \times \{1, ... | x | \}$ $u_i = U_{y_i}$ and $v_j = V_{x_j}$ token embeddings from lookup tables.

$$egin{aligned} h_{ij} &= f(u_i, v_j) \ &= egin{cases} concat([u_i, v_j]) \ u_i \odot v_j \end{aligned}$$

Padding:

Left and right for the source. Only left for the target.

∢ 注→

NLE. Sept 2018

く注→

∢ 注→

∢ 注→

Pervasive attention | DenseNets (Huang et al., 2017)

Growing the input feature maps by ${\boldsymbol{g}}={\boldsymbol{3}}{\boldsymbol{2}}$

く注→

Pervasive attention | DenseNets (Huang et al., 2017)

Growing the feature maps up to $\mathbf{n_0} + \mathbf{L} \times \mathbf{g}$ n_0 : initial features L: number of layers (single block).

Pervasive attention | Aggregation

How to encode x and $y_{<t}$ in $f_{\theta}(\mathbf{x}, y_{<t})$?

∢ 注→

Pervasive attention | Aggregation

Aggregate the hidden states (channel by channel): With $H_3 = [h_{31}^L, ..., h_{3|x|}^L] \in \mathbb{R}^{d \times |x|}$

Max/avergae pooling:

•
$$h_3 = \max_{1 \le i \le |x|} H_3.$$

• $h_3 = \frac{1}{|x|} \sum_{1 \le i \le |x|} H_3.$

- Self-attention: $\rho = softmax(H_3^TW + b)$ $h_3 = H_3\rho$.
- A combination of the above!

< ≣⇒

◆ 臣 →

- How do we fare against sota encoder-decoder models?
- What are some key parameters of our model?

く注→

- How do we fare against sota encoder-decoder models?
- What are some key parameters of our model?
- Task : translation of TED and TEDx talks: German \leftrightarrow English.
 - Train 160k, dev 7k, test 6.5k.
 - Lowercasing and tokenization (Moses).
 - Subwords (BPE, Sennrich et al. (2016)).

< ∃→

Experiments: IWSLT'14 | Ablation study

∢ 注→

Experiments: IWSLT'14 | Ablation study

∢ 注→

Experiments: IWSLT'14 | Ablation study

Model	BLEU	$Flops \times 10^5$	#params
Average	31.57 ± 0.11	3.63	7.18M
Max	$\textbf{33.70} \pm \textbf{0.06}$	3.44	7.18M
Attn	32.09 ± 0.12	3.61	7.24M
[Max, Attn]	$\textbf{33.81} \pm \textbf{0.03}$	3.51	7.24M

Our model (L=24, g=32, $d_s=d_t=128$) with different **aggregators**.

く注→

Experiments: IWSLT'14 | State-of-the-art

Word-based	De-En	$_{(\times 10^5)}^{\rm Flops}$	# prms	En-De	# prms
Conv-LSTM (MLE) (Bahdanau et al., 2017) Bi-GRU (MLE+SLE) (Bahdanau et al., 2017)	27.56 28.53				
Conv-LSTM (deep+pos) (Gehring et al., 2017a) NPMT + language model (Huang et al., 2018)	30.4 30.08			25.36	
BPE-based					
RNNsearch* (Bahdanau et al., 2015) Varational attention (Deng et al., 2018)	31.02 33.10	1.79	6M	25.92	7M
Transformer** (Vaswani et al., 2017) ConvS2S** (MLE) (Gehring et al., 2017b) ConvS2S (MLE+SLE) (Edunov et al., 2018)	32.83 32.31 32.84	3.53 1.35	59M 21M	27.68 26.73	61M 22M
Pervasive attention (ours)	$\textbf{34.10}{\pm}~\textbf{0.04}$	3.51	9M	27.77± 0.1	7M

(*): results obtained using our implementation.

(**): results obtained using FairSeq (Gehring et al., 2017b).

Experiments: IWSLT'14 | State-of-the-art

Word-based	De-En	Flops $(\times 10^5)$	# prms	En-De	# prms
Conv-LSTM (MLE) (Bahdanau et al., 2017) Bi-GRU (MLE+SLE) (Bahdanau et al., 2017)	27.56 28.53				
Conv-LSTM (deep+pos) (Gehring et al., 2017a) NPMT + language model (Huang et al., 2018)	30.4 30.08			25.36	
BPE-based					
RNNsearch* (Bahdanau et al., 2015) Varational attention (Deng et al., 2018)	31.02 33.10	1.79	6M	25.92	7M
Transformer** (Vaswani et al., 2017) ConvS2S** (MLE) (Gehring et al., 2017b) ConvS2S (MLE+SLE) (Edunov et al., 2018)	32.83 32.31 32.84	3.53 1.35	59M 21M	27.68 26.73	61M 22M
Pervasive attention (ours)	$\textbf{34.10}{\pm}~\textbf{0.04}$	3.51	9M	$\big \hspace{0.1cm} \textbf{27.77} \pm \hspace{0.1cm} \textbf{0.1} \big $	7M
Transformer** (Vaswani et al., 2017)	35.61	3.42	46M	29.5	

(*): results obtained using our implementation.

(**): results obtained using FairSeq (Gehring et al., 2017b).

く注→

For *i* a position in *y*, the max-pooling operator partitions the *n* channels by assigning them across the source tokens j.

$$B_{ij} = \{d \in \{1, \dots, f_L\} | j = rgmax(H^L_{ijd})\}$$

Visualizing $\alpha_{i,j} \propto |B_{ij}|$

Alignment visualization | Example 1

Conclusion

Joint-coding approach, alternative to encoder-decoder

- 2D CNN with masked filters.
- ► Source-target interactions pervasive in the architecture.
- ▶ Proper re-encoding of source at every target token.
- ► Max-pooling generates implicit alignment.
- Compares favorably to encoder-decoder models

< ∃⇒

Conclusion

Joint-coding approach, alternative to encoder-decoder

- 2D CNN with masked filters.
- ► Source-target interactions pervasive in the architecture.
- Proper re-encoding of source at every target token.
- Max-pooling generates implicit alignment.
- Compares favorably to encoder-decoder models
- Ongoing work:
 - ► Training on larger corpora (WMT).
 - ▶ More efficient hybrid 1D-2D architectures
 - Simultaneous training for both directions.

< ∃⇒

Thank you for your attention.

∢ 注→

- Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe, R., Pineau, J., Courville, A., and Bengio, Y. (2017). An actor-critic algorithm for sequence prediction. In *ICLR*.
- Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In ICLR.
- Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. In *EMNLP*.
- Deng, Y., Kim, Y., Chiu, J., Guo, D., and Rush, A. (2018). Latent alignment and variational attention. arXiv preprint arXiv:1807.03756.
- Edunov, S., Ott, M., Auli, M., Grangier, D., and Ranzato, M. (2018). Classical structured prediction losses for sequence to sequence learning. In NAACL.
- Gehring, J., Auli, M., Grangier, D., and Dauphin, Y. (2017a). A convolutional encoder model for neural machine translation. In ACL.
- Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. (2017b). Convolutional sequence to sequence learning. In ICML.
- Graves, A. (2013). Generating sequences with recurrent neural networks. CoRR, abs/1308.0850.
- Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. (2017). Densely connected convolutional networks. In CVPR.
- Huang, P., Wang, C., Huang, S., Zhou, D., and Deng, L. (2018). Towards neural phrase-based machine translation. In ICLR.
- Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural network for modelling sentences. In ACL.
- Kim, Y. (2014). Convolutional neural networks for sentence classification. In ACL.
- Luong, T., Pham, H., and Manning, C. (2015). Effective approaches to attention-based neural machine translation. In EMNLP.
- Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words with subword units. In ACL.
- Sutskever, I., Vinyals, O., and Le, Q. (2014). Sequence to sequence learning with neural networks. In NIPS.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In NIPS.

< ∃→