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Overview

In state-of-the-art encoder-decoder models, the source and target sequences are
processed separately. The decoder, equipped with an attention mechanism,
focuses on different parts of the source at each decoding step. However, the
attention is limited to assigning weights to the once and for all computed
encoder states.

Contributions: build an architecture from the get go around attention by
jointly encoding the source and target sequences and allowing for different
source representations for every target position.

Encoder-Decoders

Encoder

Inputs: source sequence x = (x1, x2, . . . , x|x|).
Depending on the chosen architecture, the encoder computes the source rep-
resentations.
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Recurrent Convolutional Self-attention

Decoder

Inputs: source codes (s1, . . . , s|x|) and target sequence y = (y1, y2, . . . , y|y|).
At every step t:

I Under the architecture, compute the hidden state ht causally.

I Given the new state, the attention mechanism yields a context ct.

I ht := combine(ht, ct).

Pervasive attention: the input
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The initial 2D grid:

∀i , j : {1, ...|y |} × {1, ...|x |}
ui = Uyi (target embedding)

vj = Vxj (source embedding)

hi j = concat(ui, vj)

Pervasive attention: the convolutional network

I Causality: with masked filters in the target direction.

I Context: grown with stacked convolutions.

I Padding: throughout the network to maintain source/target resolution.
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Layer i = BN - ReLU - Conv(1) - BN - ReLU - Conv(k)

I Using a single-block DenseNet (Huang et al., 2017) with L layers.

I Each layer grows its input channels by g.
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Pervasive attention: the aggregation

y1

x1

y2

y3

y4

y5

x2 x3 x4 x5

hL11

hL21

hL31

hL41

hL51

hL12

hL22

hL32

hL42

hL52

hL13

hL23

hL33

hL43

hL53

hL14

hL24

hL34

hL44

hL54

hL15

hL25

hL35

hL45

hL55

To aggregate activations across source posi-
tions e.g. with H3 = [hL31, ..., h

L
3|x |] ∈ R

d×|x |,
we can use:

I Max/average pooling.

I Self-attention:
ρ = sof tmax(HT3 W + b).
h3 = H3ρ.

I A combination of the above.

Experimental results

Benchmark: IWSLT’14 German↔English translation.

Pre-processing:

I Tokenization (Moses).

I Lower-casing.

I Length ≤ 175 words

I Lengths ratio ≤ 1.5.

I Train, Dev, Test :
160k, 7.2k, 6.7k

Sub-word segmentation

I BPE (Sennrich et al., 2016).

I 14k merge operations on
EN+DE (V1) / on each
separately (V2).

I V1(EN,DE) = 8.8k, 12k,
V2(EN,DE) = 13.3k, 13.8k.

Sequence length

Comparison to the stat-of-the-art

De→En #prms En→De #prms

�RNNsearch (Bahdanau et al., 2015) 29.98 13M 25.04 15M
Varational attention (Deng et al., 2018) 33.10 - - -

��ConvS2S (MLE) (Gehring et al., 2017) 31.59 21M 27.18 22M
ConvS2S (MLE+SLE) (Edunov et al., 2018) 32.84 - - -

��Transformer (Vaswani et al., 2017), V1 34.42 46M 28.23 48M
��Transformer (Vaswani et al., 2017), V2 34.44 52M 28.07 52M

Pervasive attention (ours), V1 33.86 11M 27.21 11M
Pervasive attention (ours), V2 34.05 22M 27.97 22M

� models we trained using either our implementation or fairseq. � 10 averaged checkpoints.

Alignment visualization

(a) Max-pooling (b) Self-attention

(c) Max-pooling

(d) Self-attention

BLEU per sequence length

Due to memory/compute limitations, O(|x |.|y |) instead of O(|y | + |x |), we
truncate sequences longer than 80 tokens when training which affects the per-
formance on long sequences.

Takeaways

We have competitive results with:

I A sequence-to-sequence model outside of the encoder-decoder paradigm.

I A convolutional architecture, proving they work well for NLP problems.

I An implicit attention via re-encoding the source sequence then simply max-
pooling the representations.

I Less parameters (at least 1/2 compared to transformer).
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