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Motivation

State-of-the-art seq2seq models process easy and hard samples the same way.

Easy: Merci. → Thank you.
Hard: Il s’agit là de rien de moins que de réinventer l’Union européenne sans détruire celle qui
existe déjà! → In doing so, we need, no less, to reinvent the European Union, but without
destroying the present Union.

Examples from WMT14 En-FR

Our goals:
1 Train a seq2seq model capable of yielding an output at varying levels of

computation.
2 Plug a module on top of the seq2seq model to choose the ‘appropriate’ amount of

computation.
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Slicing the Transformer decoder
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For a source-target pair (x , y ):
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Slicing the Transformer decoder

1 Train a seq2seq model capable of yielding an output at varying levels of
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Slicing the Transformer decoder

Issue: How to address the interaction between steps in self-attention?
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Make token-specific decisions
Copy activations to the subsequent blocks.
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Pre-training the anytime decoder | Aligned training

Let hn
t be the hidden state at time-step t (encoding the source x and the prefix y≤t)

after going through n blocks (out of N).
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C3 For n ∈ 1 . . .N:
1 LLn =

∑|y |
t=1 log p(yt |hn

t−1)

Ldec(x, y) = −
N∑

n=1
ωn LLn,

where {ωn}n weigh the different losses.
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Pre-training the anytime decoder | Mixed training
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For m ∈ 1 . . .M:
1 Sample a sequence of exits

(n1, n2, . . . , n|y |) ∼ U([1..N])|y |

2 LL(m) =
∑|y |

t=1 log p(yt |hnt
t−1)

Ldec(x, y) = − 1
M

M∑
m=1

LL(m)
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Pre-training the anytime decoder | Mixed vs. Aligned training
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• Adapted for token-specific decoding.
• Requires multiple forward passes.

Better performances with the ‘aligned’ training.
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Exit prediction

1 Train a seq2seq model capable of yielding an output at varying levels of
computation.

2 Plug a module on top of the seq2seq model to choose the ‘appropriate’ amount
of computation.

We present 3 approaches with oracle-supervised trainable classifiers
and 1 approach based on confidence thresholding.
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Trainable exit prediction | Sequence-specific depth

Predict a single exit for all tokens in a given sample.

1 Model the exit distribution q : predict the exit given an aggregate of the source
hidden states {s1, . . . , s|x|}:

s = 1
|x|

|x|∑
i=1

si , q(n|x) = softmax(Whs + bh),

with weights and biases (Wh, bh) such that Wh maps to RN .

2 Evaluate a target distribution q∗ (oracle-based):

Likelihood: LLn =
|y |∑

t=1
log p(yt |hn

t−1), q∗(x, y) = δ(arg max
n

LLn−λn)

Correctness: Cn = |{t | yt = arg max
y

p(y |hn
t−1)}|, q∗(x, y) = δ(arg max

n
Cn − λn)

3 Optimize H(q∗, q).
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Trainable exit prediction | Token-specific depth

Predict an exit for each token.

1 Model the exit distribution qt ,∀t :
With a multinomial: prediction after the 1st block.
qt(n|x, y<t) = softmax(Whh1t + bh) with h1t the output of the first decoder block.

With a Poisson binomial (+ monotonicity constraints):
Estimate a halting probability after each block:

∀n ∈ [1..N−1], χn
t = σ(Whhn

t + bh)

qt(n|x, y<t) =


χn

t
∏

n′<n
(1− χn′

t ), if n < N∏
n′<N

(1− χn′
t ), if n = N
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Trainable exit prediction | Token-specific depth

Predict an exit for each token.

1 Model the exit distribution qt ,∀t.
2 Evaluate a target distribution q∗t , ∀t (oracle-based):

Likelihood: LLn
t = log p(yt |hn−1

t )

Smoothed likelihood: smoothLLn
t =

∑
t′ κ(t, t ′) LLn

t′ , κ(t, t ′) = e−
|t−t′|2

σ

Correctness: Cn
t = (yt = arg maxy p(y |hn

t−1))
Smoothed correctness: smoothCn

t =
∑

t′ κ(t, t ′) Cn
t

. Regularize the score and estimate a target distribution:

q∗t (x, y) = δ(arg max
n

scoren
t −λn)

3 Optimize
∑

t H(q∗t , qt).
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Adaptive exit prediction | inference
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Confidence thresholding

Input: x, τ = (τ1, τ2, . . . , τN−1)
for n ∈ 1 . . .N do

Forward through the nth block.
if arg maxyt p(yt |hn

t−1) ≥ τn
then

Exit
end if

end for

D
ec
od

er
de
pt
h

Decoding step

C1 ≤ τ1

C2 ≥ τ2

C1 ≥ τ1 C1 ≤ τ1

C2 ≤ τ2

C3

Tune τ with random search on the development set so as to maximize BLEU.

An extension of the thresholding in ‘Multi-Scale Dense Networks for Resource Efficient Image Classification’
(Huang et al. ICLR’18) to sequence prediction.
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Experiments on IWSLT14 DE→ EN

• Train (160K), Dev (7K), Test (6K)
• Vocabularies: Joint byte-pair encoding: EN 8K & DE 6.7K
• Average sequence length 23 tokens
• Architecture: Transformer small

N = 6, denc = 512, ddec = 256, dffn = 1024.
• Separate 6 anytime classifiers C1, . . . , C6.
• Evaluation: Best checkpoint on dev with beam=5.

• N baselines : N independent models with varying depths n ∈ [1 . . .N]
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Pre-training the anytime decoder | Mixed vs. Aligned training | IWSLT14

For each aligned/mixed model:
• Uniform: evaluating with a random exit per token nt ∼ U([1 . . .N]).
• n= : evaluating each exit independently.

Uniform n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 Average

Baseline - 34.5 35.5 35.8 35.7 35.8 36.0 35.5

Aligned (ωn = 1/N) 35.5 34.1 35.5 35.8 36.1 36.1 36.2 35.6

Mixed M = 1 34.1 32.9 34.3 34.5 34.5 34.6 34.5 34.2
Mixed M = 3 35.1 33.9 35.2 35.4 35.5 35.5 35.5 35.2
Mixed M = 6 35.3 34.2 35.4 35.8 35.9 35.8 35.9 35.5
Mixed M = 8 35.2 33.9 35.1 35.4 35.6 35.7 35.7 35.2

BLEU on the development set of IWSLT14 De-En
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Training for adaptive exits | IWSLT14

• Finetuning an aligned model with L = Ldec + H(q∗, q)
• Measuring translation quality with BLEU (the higher the better) and the

computational cost with the average exit AE (the lower the better).
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Experiments on WMT14 EN→ FR | Scaling depth-adaptive models

• Train (35.5M), Dev (26K), Test (newstest14: 3K)
• Vocabularies: Joint byte-pair encoding + shared dictionary: 44K
• Average sequence length 29 tokens
• Architecture: Transformer big

N = 6, denc = 1024 = ddec = 1024, dffn = 4096.
• Tied anytime classifiers C1 = C2 = . . .C6.
• Evaluation: average of 10 checkpoints with beam=4 and length-penalty=0.6.

• N baselines : N independent models with varying depths n ∈ [1 . . .N]
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Experiments on WMT14 EN→ FR | Scaling depth-adaptive models
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Qualitative results | Token-specific exit
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Figure: Examples from the WMT14 En-Fr with Tok-LL Poisson
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Qualitative results | Sequence-specific exit

(a) Seq-LL (λ = 2) (b) Seq-LL (λ = 1)

Figure: Distribution of the exits wrt. the source sequence length with different regularizers
λ = 1 and λ = 2. Results on IWSLT14 test set.
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Conclusion

• We extended anytime prediction to the structured prediction setting and
introduced simple yet effective methods to equip models with the ability to emit
outputs at different levels.
• We compared a number of different mechanisms to predict the required network

depth and find that a simple likelihood based Poisson classifier obtains the best
trade-off between speed and accuracy.
• Our results show that the number of decoder layers can be vastly reduced at no

loss in accuracy.
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