# Depth-Adaptive Transformer For resource efficient machine translation



Maha Elbayad\* Jiatao Gu Michael Auli Submitted to ICLR 2020

October 4, 2019

#### facebook

Artificial Intelligence Research

 $^{\ast}$  work done during an internship at FAIR, Menlo Park, CA

State-of-the-art seq2seq models process easy and hard samples the same way.

**Easy:** Merci.  $\rightarrow$  Thank you.

**Hard:** Il s'agit là de rien de moins que de réinventer l'Union européenne sans détruire celle qui existe déjà!  $\rightarrow$  In doing so, we need, no less, to reinvent the European Union, but without destroying the present Union.

Examples from WMT14 En-FR

#### Our goals:

- Train a seq2seq model capable of yielding an output at varying levels of computation.
- Plug a module on top of the seq2seq model to choose the 'appropriate' amount of computation.



 Train a seq2seq model capable of yielding an output at varying levels of computation.



 Train a seq2seq model capable of yielding an output at varying levels of computation.







Issue: How to address the interaction between steps in self-attention?



Make a **sequence-specific decision** All tokens exit at the same point

Issue: How to address the interaction between steps in self-attention?





4.31.5

Let  $h_t^n$  be the hidden state at time-step t (encoding the source x and the prefix  $y_{\leq t}$ ) after going through n blocks (out of N).





For  $m \in 1 \dots M$ :

Sample a sequence of exits

 (n<sub>1</sub>, n<sub>2</sub>, ..., n<sub>|y|</sub>) ~ U([1..N])<sup>|y|</sup>

 LL<sup>(m)</sup> = ∑<sup>|y|</sup><sub>t=1</sub> log p(y<sub>t</sub>|h<sup>n<sub>t</sub></sup><sub>t=1</sub>)

$$\mathcal{L}_{dec}(oldsymbol{x},oldsymbol{y}) = -rac{1}{M}\sum_{m=1}^{M}\mathsf{LL}^{(m)}$$

## Pre-training the anytime decoder | Mixed vs. Aligned training



- Adapted for sequence-specific decoding.
- A single forward pass.



- Adapted for token-specific decoding.
- Requires multiple forward passes.

# Pre-training the anytime decoder | Mixed vs. Aligned training



- Adapted for sequence-specific decoding.
- A single forward pass.



- Adapted for token-specific decoding.
- Requires multiple forward passes.

#### Better performances with the 'aligned' training.

### Exit prediction

- Train a seq2seq model capable of yielding an output at varying levels of computation.
- Plug a module on top of the seq2seq model to choose the 'appropriate' amount of computation.

We present 3 approaches with oracle-supervised **trainable classifiers** and 1 approach based on **confidence thresholding**.

 Model the exit distribution q : predict the exit given an aggregate of the source hidden states {s<sub>1</sub>,..., s<sub>|x|</sub>}:

$$s = rac{1}{|oldsymbol{x}|} \sum_{i=1}^{|oldsymbol{x}|} s_i, \quad q(n|oldsymbol{x}) = ext{softmax}(W_hs+b_h),$$

with weights and biases  $(W_h, b_h)$  such that  $W_h$  maps to  $\mathbb{R}^N$ .

- Model the exit distribution q : predict the exit given an aggregate of the source hidden states {s<sub>1</sub>,..., s<sub>|x|</sub>}:
- **2** Evaluate a target distribution  $q^*$  (oracle-based):

Model the exit distribution q : predict the exit given an aggregate of the source hidden states {s<sub>1</sub>,..., s<sub>|x|</sub>}:

2 Evaluate a target distribution  $q^*$  (oracle-based): Likelihood:  $LL^n = \sum_{t=1}^{|\mathbf{y}|} \log p(y_t | h_{t-1}^n), \qquad q^*(\mathbf{x}, \mathbf{y}) = \delta(\arg \max_n LL^n - \lambda n)$ 

Model the exit distribution q : predict the exit given an aggregate of the source hidden states {s<sub>1</sub>,..., s<sub>|x|</sub>}:

2 Evaluate a target distribution  $q^*$  (oracle-based): Likelihood:  $LL^n = \sum_{\substack{t=1 \ r \neq 1}}^{|\mathbf{y}|} \log p(y_t | h_{t-1}^n), \qquad q^*(\mathbf{x}, \mathbf{y}) = \delta(\arg \max_n LL^n - \lambda n)$ Correctness:  $C^n = |\{t \mid y_t = \arg \max_y p(y | h_{t-1}^n)\}|, \quad q^*(\mathbf{x}, \mathbf{y}) = \delta(\arg \max_n C^n - \lambda n)$ 

Model the exit distribution q : predict the exit given an aggregate of the source hidden states {s<sub>1</sub>,..., s<sub>|x|</sub>}:

2 Evaluate a target distribution  $q^*$  (oracle-based): Likelihood:  $LL^n = \sum_{\substack{t=1 \ y = 1}}^{|y|} \log p(y_t | h_{t-1}^n), \qquad q^*(x, y) = \delta(\arg\max_n LL^n - \lambda n)$ Correctness:  $C^n = |\{t \mid y_t = \arg\max_y p(y | h_{t-1}^n)\}|, \quad q^*(x, y) = \delta(\arg\max_n C^n - \lambda n)$ 

**3** Optimize  $H(q^*, q)$ .

 Model the exit distribution q<sub>t</sub>, ∀t :
 With a multinomial: prediction after the 1st block. q<sub>t</sub>(n|x, y<sub><t</sub>) = softmax(W<sub>h</sub>h<sup>1</sup><sub>t</sub> + b<sub>h</sub>) with h<sup>1</sup><sub>t</sub> the output of the first decoder block.

 Model the exit distribution q<sub>t</sub>, ∀t :
 With a multinomial: prediction after the 1st block. q<sub>t</sub>(n|x, y<sub><t</sub>) = softmax(W<sub>h</sub>h<sup>1</sup><sub>t</sub> + b<sub>h</sub>) with h<sup>1</sup><sub>t</sub> the output of the first decoder block.

With a Poisson binomial (+ monotonicity constraints): Estimate a halting probability after each block:

$$\forall n \in [1..N-1], \ \chi_t^n = \sigma(W_h h_t^n + b_h)$$
$$q_t(n|\mathbf{x}, \mathbf{y}_{< t}) = \begin{cases} \chi_t^n \prod_{n' < n} (1 - \chi_t^{n'}), & \text{if } n < N \\ \prod_{n' < N} (1 - \chi_t^{n'}), & \text{if } n = N \end{cases}$$

 Model the exit distribution q<sub>t</sub>, ∀t.
 Evaluate a target distribution q<sub>t</sub><sup>\*</sup>, ∀t (oracle-based): Likelihood: LL<sup>n</sup><sub>t</sub> = log p(y<sub>t</sub>|h<sub>t</sub><sup>n-1</sup>)

 Model the exit distribution q<sub>t</sub>, ∀t.
 Evaluate a target distribution q<sup>\*</sup><sub>t</sub>, ∀t (oracle-based): Likelihood: LL<sup>n</sup><sub>t</sub> = log p(y<sub>t</sub>|h<sup>n-1</sup><sub>t</sub>)
 Smoothed likelihood: smoothLL<sup>n</sup><sub>t</sub> = ∑<sub>t'</sub> κ(t, t') LL<sup>n</sup><sub>t'</sub>, κ(t, t') = e<sup>-\frac{|t-t'|^2}{σ}</sup>

 Model the exit distribution q<sub>t</sub>, ∀t.
 Evaluate a target distribution q<sub>t</sub><sup>\*</sup>, ∀t (oracle-based): Likelihood: LL<sup>n</sup><sub>t</sub> = log p(y<sub>t</sub>|h<sup>n-1</sup><sub>t</sub>)
 Smoothed likelihood: smoothLL<sup>n</sup><sub>t</sub> = ∑<sub>t'</sub> κ(t, t') LL<sup>n</sup><sub>t'</sub>, κ(t, t') = e<sup>-|t-t'|<sup>2</sup>/σ</sup>
 Correctness: C<sup>n</sup><sub>t</sub> = (y<sub>t</sub> = arg max<sub>y</sub> p(y|h<sup>n</sup><sub>t-1</sub>))

 Model the exit distribution q<sub>t</sub>, ∀t.
 Evaluate a target distribution q<sub>t</sub><sup>\*</sup>, ∀t (oracle-based): Likelihood: LL<sup>n</sup><sub>t</sub> = log p(y<sub>t</sub>|h<sub>t</sub><sup>n-1</sup>)
 Smoothed likelihood: smoothLL<sup>n</sup><sub>t</sub> = ∑<sub>t'</sub> κ(t, t') LL<sup>n</sup><sub>t'</sub>, κ(t, t') = e<sup>-|t-t'|<sup>2</sup>/σ</sup>
 Correctness: C<sup>n</sup><sub>t</sub> = (y<sub>t</sub> = arg max<sub>y</sub> p(y|h<sup>n</sup><sub>t-1</sub>))
 Smoothed correctness: smoothC<sup>n</sup><sub>t</sub> = ∑<sub>t'</sub> κ(t, t') C<sup>n</sup><sub>t</sub>

 Model the exit distribution q<sub>t</sub>, ∀t.
 Evaluate a target distribution q<sub>t</sub><sup>\*</sup>, ∀t (oracle-based): Likelihood: LL<sup>n</sup><sub>t</sub> = log p(y<sub>t</sub>|h<sub>t</sub><sup>n-1</sup>)
 Smoothed likelihood: smoothLL<sup>n</sup><sub>t</sub> = ∑<sub>t'</sub> κ(t, t') LL<sup>n</sup><sub>t'</sub>, κ(t, t') = e<sup>-|t-t'|<sup>2</sup>/σ</sup>
 Correctness: C<sup>n</sup><sub>t</sub> = (y<sub>t</sub> = arg max<sub>y</sub> p(y|h<sub>t-1</sub><sup>n</sup>))
 Smoothed correctness: smoothC<sup>n</sup><sub>t</sub> = ∑<sub>t'</sub> κ(t, t') C<sup>n</sup><sub>t</sub>
 Pogularize the score and optimate a target distribution:

 $\triangleright$  Regularize the score and estimate a target distribution:

$$q_t^*(\mathbf{x}, \mathbf{y}) = \delta(\arg\max_n \operatorname{score}_t^n - \lambda n)$$

**3** Optimize  $\sum_t H(q_t^*, q_t)$ .

## Adaptive exit prediction | inference



∢ ≣⇒

## Confidence thresholding



Tune  $\tau$  with random search on the development set so as to maximize BLEU.

An extension of the thresholding in 'Multi-Scale Dense Networks for Resource Efficient Image Classification' (Huang et al. ICLR'18) to sequence prediction.

# Experiments on IWSLT14 DE $\rightarrow$ EN

- Train (160K), Dev (7K), Test (6K)
- Vocabularies: Joint byte-pair encoding: EN 8K & DE 6.7K
- Average sequence length 23 tokens
- Architecture: Transformer small

$$N=6$$
,  $d_{
m enc}=512$ ,  $d_{
m dec}=256$ ,  $d_{
m ffn}=1024$ .

- Separate 6 anytime classifiers  $\mathscr{C}_1, \ldots, \mathscr{C}_6$ .
- Evaluation: Best checkpoint on dev with beam=5.

• N baselines : N independent models with varying depths  $n \in [1 \dots N]$ 

4.31.5

For each aligned/mixed model:

- Uniform: evaluating with a random exit per token  $n_t \sim \mathcal{U}([1 \dots N])$ .
- n= : evaluating each exit independently.

|                            | Uniform   <i>r</i> | n = 1 | <i>n</i> = 2 | <i>n</i> = 3 | <i>n</i> = 4 | <i>n</i> = 5 | <i>n</i> = 6 | Average |
|----------------------------|--------------------|-------|--------------|--------------|--------------|--------------|--------------|---------|
| Baseline                   | -                  | 34.5  | 35.5         | 35.8         | 35.7         | 35.8         | 36.0         | 35.5    |
| Aligned ( $\omega_n=1/N$ ) | 35.5               | 34.1  | 35.5         | 35.8         | 36.1         | 36.1         | 36.2         | 35.6    |

#### BLEU on the development set of IWSLT14 De-En

For each aligned/mixed model:

- Uniform: evaluating with a random exit per token  $n_t \sim \mathcal{U}([1 \dots N])$ .
- n= : evaluating each exit independently.

|                            | Uniform | n = 1 | <i>n</i> = 2 | <i>n</i> = 3 | <i>n</i> = 4 | n = 5 | <i>n</i> = 6 | Average |
|----------------------------|---------|-------|--------------|--------------|--------------|-------|--------------|---------|
| Baseline                   | -       | 34.5  | 35.5         | 35.8         | 35.7         | 35.8  | 36.0         | 35.5    |
| Aligned ( $\omega_n=1/N$ ) | 35.5    | 34.1  | 35.5         | 35.8         | 36.1         | 36.1  | 36.2         | 35.6    |
| Mixed $M = 1$              | 34.1    | 32.9  | 34.3         | 34.5         | 34.5         | 34.6  | 34.5         | 34.2    |
| Mixed $M = 3$              | 35.1    | 33.9  | 35.2         | 35.4         | 35.5         | 35.5  | 35.5         | 35.2    |
| Mixed $M = 6$              | 35.3    | 34.2  | 35.4         | 35.8         | 35.9         | 35.8  | 35.9         | 35.5    |
| Mixed $M = 8$              | 35.2    | 33.9  | 35.1         | 35.4         | 35.6         | 35.7  | 35.7         | 35.2    |

BLEU on the development set of IWSLT14 De-En

- Finetuning an aligned model with  $\mathcal{L} = \mathcal{L}_{\mathsf{dec}} + H(q^*, q)$
- Measuring translation quality with BLEU (the higher the better) and the computational cost with the average exit AE (the lower the better).



- Finetuning an aligned model with  $\mathcal{L} = \mathcal{L}_{\mathsf{dec}} + H(q^*, q)$
- Measuring translation quality with BLEU (the higher the better) and the computational cost with the average exit AE (the lower the better).



- Finetuning an aligned model with  $\mathcal{L} = \mathcal{L}_{\mathsf{dec}} + H(q^*, q)$
- Measuring translation quality with BLEU (the higher the better) and the computational cost with the average exit AE (the lower the better).



- Finetuning an aligned model with  $\mathcal{L} = \mathcal{L}_{\mathsf{dec}} + H(q^*, q)$
- Measuring translation quality with BLEU (the higher the better) and the computational cost with the average exit AE (the lower the better).



(b) Sequence-specific depth (test) (c) Confidence thresholding (test)

(a) Token-specific (test)

ヨト

- Train (35.5M), Dev (26K), Test (newstest14: 3K)
- Vocabularies: Joint byte-pair encoding + shared dictionary: 44K
- Average sequence length 29 tokens
- Architecture: Transformer big

$${\it N}=6$$
,  ${\it d}_{
m enc}=1024={\it d}_{
m dec}=1024$ ,  ${\it d}_{
m ffn}=4096$ .

- Tied anytime classifiers  $\mathscr{C}_1 = \mathscr{C}_2 = \ldots \mathscr{C}_6$ .
- Evaluation: average of 10 checkpoints with beam=4 and length-penalty=0.6.

• N baselines : N independent models with varying depths  $n \in [1 \dots N]$ 

# 



◆臣→

#### Experiments on WMT14 EN $\rightarrow$ FR | Scaling depth-adaptive models



∢ ≣⇒

#### Qualitative results | Token-specific exit



**src:** But passengers shoul@dn't expect changes to happen immediately.

**ref:** Mais les passagers ne devraient pas s' attendre à des changements immédiats.

**src:** I 've reached a point of political des@@ pair. **ref:** Je suis au bord du dés@@ espoir politique.

Figure: Examples from the WMT14 En-Fr with Tok-LL Poisson

#### Qualitative results | Sequence-specific exit



Figure: Distribution of the exits wrt. the source sequence length with different regularizers  $\lambda = 1$  and  $\lambda = 2$ . Results on IWSLT14 test set.

- We extended anytime prediction to the structured prediction setting and introduced simple yet effective methods to equip models with the ability to emit outputs at different levels.
- We compared a number of different mechanisms to predict the required network depth and find that a simple likelihood based Poisson classifier obtains the best trade-off between speed and accuracy.
- Our results show that the number of decoder layers can be vastly reduced at no loss in accuracy.

4.30